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Abstract

Structure learning is an important sub-domain of machine learning. Its goal
is a high level understanding of the data. For example, given an image
as a collection of pixels, the goal is to identify the objects present in the
image, such as people, trees, birds, to infer their actions (e.g., standing, fly-
ing) and interactions (e.g. a man is feeding a bird). Structure learning has
multiple applications in a variety of domains, including the analysis of cellu-
lar processes in biology, computer vision, and natural language processing,
to name only a few. In the recent couple of decades enormous progress has
been made in data analysis methods that are not based on explicit structure,
such as Support Vector Machines (SVMs) or other kernel-based methods.
Nevertheless, the importance of learning explicit structures remains crucial.
There are multiple benefits to structure-based learning as opposed to meth-
ods, where structure is present implicitly, e.g. in the form of a kernel. The
primary reason is that it is easier for us as humans to manipulate objects
like cars and people rather than raw pixels or kernel matrices. For exam-
ple, a natural query for a human would be: “find the photos of me picking
mushrooms last summer”. Thus we need a learning algorithm to go all the
way up from pixels to persons, mushrooms, trees, etc., and also actions like
picking, standing, and so on. Another important reason to learn structure
in data is “to understand the world around us” for example, to understand
biological processes or even how our own brain works. It also becomes easier
to control or influence different processes once we learn their structure and
extract simple rules governing their dynamics.

Often, the amount of supervision available for a learning algorithm in a
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structure learning task is limited or even non-existent. Even when present,
supervision is often at a high level, whereas the data are represented at a
low level. For example, we may infer from an image label that it is an image
of a cow, but the algorithm still has to infer the cow’s location and shape.
However, many studies have shown that even completely unsupervised learn-
ing methods are able to identify meaningful structures present in data and
can facilitate high level decisions. But despite their remarkable success in
practice, our conceptual understanding of structure learning approaches is
highly limited. The issue is so basic that even if we are given two reasonable
solutions to some problem (for example, two possible segmentations of an
image) we are unable to make a well-founded judgment as to which one is
better. Typical forms of evaluation are quite subjective, such as “this seg-
mentation looks more natural” or “this has a higher level of correlation with
human annotation”. However, this form of evaluation is hard to apply in
domains where our own intuition is limited, such as bioinformatics or neuro-
science. Model order selection and a proper choice of evaluation procedures
have remained open questions in structure learning for over half a century.
The lack of solid theoretical foundations has given rise to multiple heuristic
approaches which are hard to compare and in the end are slowing down the
development of the whole field.

The picture is completely different in supervised learning. The first ad-
vantage of supervised learning is that it has a well-defined learning objective
- the prediction of a label. From this point it becomes clear how to con-
duct a formal analysis of different learning approaches (usually in the form
of a derivation of a generalization or sample complexity bounds) and how
to evaluate them. Nowadays, most successful classification algorithms are
accompanied by generalization guarantees and many were derived as algo-
rithms for optimization of generalization guarantees. The existence of a
clear objective and generalization guarantees for most algorithms makes it
possible to compare solutions to the same problem obtained by different ap-
proaches (e.g., SVMs and decision trees) both theoretically and practically.
The ability to make a formal analysis and compare different approaches
accounts for the rapid rise in supervised learning in recent decades.



In this thesis it is claimed that the ill-posed nature of unsupervised
learning approaches and in particular unsupervised learning approaches to
structure learning is caused by the fact that unsupervised learning problems
are usually taken out of context. Here we argue that one does not learn
structure just for the sake of learning structure, but rather in order to facil-
itate solving some higher level task. By identifying that task and looking at
structure learning from the point of view of its utility in solving the higher
level task we return the structure learning problem to its context. This en-
ables a clear and objective comparison of different approaches to structure
learning, similar to the way it is done in the supervised learning. We can
also examine in which situations knowing structure is beneficial to solving
a task, or whether unstructured methods such as SVMs or Principal Com-
ponent Analysis (PCA) would perform better. The problem of model order
selection can be answered naturally in this context. It also improves our
understanding of which questions the structure we have learned can answer
and which it cannot. Thus, it is not only desirable, but necessary to consider
structure learning within the wider context of its possible applications.

We demonstrate our approach to the formulation of structure learning
within the context of a higher level task using the example of co-clustering.
Co-clustering is a widely used approach to the analysis of data matrices
by simultaneous grouping (clustering) of “similar” rows and columns of a
data matrix; for instance, clustering of viewers and movies in collaborative
filtering, genes and conditions in gene expression data analysis, or words
and documents in text analysis. Co-clustering was traditionally considered
an unsupervised approach to data analysis. Various solutions were designed
by approximating different properties of the data at hand, but in most cases
there was no way to compare different solutions and perform model order
selection. This dissertation examines co-clustering solutions in the context
of their ability to predict new events generated by the same distribution
that generated the data matrix. Within this context it becomes possible to
carry out generalization analysis of co-clustering, model order selection, and
to compare co-clustering with other approaches to solving this problem.

We find it convenient to use a PAC-Bayesian framework to carry out a



formal analysis of generalization properties of co-clustering. This work also
makes several contributions to the domain of PAC-Bayesian generalization
bounds, which up to now have solely been used in the context of general-
ization analysis of classification approaches. Here we derive PAC-Bayesian
generalization bound for density estimation. We also show that the obtained
bounds for co-clustering are actually generalization bounds for a particular
form of graphical models, where each hidden variable is connected to a sin-
gle observable variable. The bounds suggest that the generalization power
of such graphical models is optimized by a tradeoff between empirical per-
formance and mutual information preserved by the hidden variables on the
observed variables. The regularization of the models by the mutual infor-
mation comes as a result of the use of combinatorial priors in PAC-Bayesian
bounds and is yet another contribution of our work. Our combinatorial pri-
ors can be compared to Gaussian and Laplacian priors that were used in
other works on PAC-Bayesian bounds and result in L2-norm and L1-norm
regularization, respectively.

In the applications chapter we show that the tradeoff between empirical
performance and mutual information preserved on the observed variables
that was derived from the bounds enables a complete control over regular-
ization of the co-clustering model. It further achieves state-of-the-art results
on the MovieLens collaborative filtering dataset.

In an excursus, we show that the bounds developed for co-clustering
can be applied in classifications by a single parameter (e.g., prediction of
a probability of a disease based on country visited). In the applications
chapter we demonstrate that the bounds are especially tight in this task
and are less than 15% away from the test error. We suggest that the bounds
can be applied to feature ranking. We futher show that such an approach to
feature ranking, where features are ranked by their generalization potential,
is much more successful than feature ranking based on empirical mutual
information or normalized correlation with the label.

As a continuation of the main thrust of the thesis, we show that it is
possible to extend the analysis of co-clustering to more complex domains.
Specifically, we show that the same kind of a tradeoff between empirical



performance and mutual information that the hidden variables preserve on
the observed variables also holds in graphical models, where hidden variables
are connected in a tree shape and the observed variables are at the leaves of
the tree. We also demonstrate that PAC-Bayesian bounds are able to exploit
the factor form of graphical models and make it possible to derive bounds
that depend on the sizes of the cliques of the graph rather than the size of
the parameter space. We further suggest viewing the problem of learning
graphical models from the point of view of the ability of the graphical model
to predict new events generated by the same distribution rather than the
frequently applied practice of fitting the train set. Extensions of the results
to more complex graphical models as well as the development of efficient
algorithms for optimization of structures of graphical models with respect
to the bounds are subjects for future research.
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Chapter 1

Introduction

Structure learning is a long-standing problem that has attracted extensive
interest in fields such as bioinformatics, image processing, neuroscience, and
so on. In many situations a learning task must take place with very limited
or even no supervision. Even when supervision is available it is often given
at a high level, whereas the data are represented at a low level; thus we
have no guidance to make it all the way up from the low level to the high
level. Nevertheless, many studies including our own in biosequence analysis
[79, 13, 78, 77] and image processing [81] have shown that even completely
unsupervised learning methods are able to identify meaningful structures
present in the data and can facilitate high level decisions. However, the
conceptual understanding of unsupervised learning approaches to structure
learning is far from satisfactory. This is true to such an extent that even
if we are given two reasonable solutions to some problem we are unable
to provide a well-founded judgment as to which one is better. We further
illustrate this in the following motivation example based on [81].

1.1 Motivation Example

In [81] we presented a method for unsupervised content based clustering of
collections of images. Clustering of image collections into meaningful classes
has many applications in the organization of image databases and the design
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Classification

Original 
images

Segmented images Classified images

Joint
Segmentation

Figure 1.1: [81]: Unsupervised Clustering of Images using their
Joint Segmentation - workflow illustration. See text for details. The
figure is for illustration purposes only, the actual outcome of the algorithm
is presented in Figures 1.2-1.5 and in more detail in [81].

of human interfaces for collection browsing. In [81] we suggested a two-level
approach to solve this task, depicted in Figure 1.1. The first level involves
learning a centroid-based mixture of textures model to represent all the im-
ages in the collection. The idea behind this step is that if there is an object
common to multiple images, the corresponding texture (or textures) should
appear in those images. Through learning the mixture of textures model
each image is represented with a small number of representative textures.
The small number of representative textures is very likely to correspond to
objects that appeared in multiple images. Thus, we obtained a simple rep-
resentation of each image in terms of objects common to multiple images,
so called “visual words”. The second level involved drawing an analogy be-
tween textures-words and images-documents and applying algorithms from
the field of unsupervised document classification to cluster the images.

Some results obtained by the above approach are shown in Figures 1.2-
1.5 and we refer the reader to the original paper for more details. We point
out that although the results look nice, there are many open questions that
remain unresolved. One of the most important is how we can formally
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Figure 1.2: Unsupervised Clustering of a Collection of Images from
Australia. From [81]. The original dataset.

say which solution is better. On the most superficial level this becomes
the question of whether we should partition the collection into two, three,
four or some other number of clusters. However it should be recalled that
we applied a two-level unsupervised approach, which thus raised a similar
question of how many textures in the mixture of textures model should have
been selected at the lower level. And there are multiple ways to model the
textures aside from other completely different ways to approach this task
that could be chosen. In the absence of a clear evaluation procedure we get
lost in an ocean of heuristic approaches.

It should be borne in mind that the questions of model order selection
and comparison of different approaches are open questions that apply even
to the simplest and the oldest problem of learning a one-level mixture model.
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(a) Cluster 1 out of 2

(b) Cluster 2 out of 2

Figure 1.3: Unsupervised Clustering of a Collection of Images from
Australia. From [81]. Clustering of the dataset into two clusters.
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(a) Cluster 1 out of 3

(b) Cluster 2 out of 3

(c) Cluster 3 out of 3

Figure 1.4: Unsupervised Clustering of a Collection of Images from
Australia. From [81]. Clustering of the dataset into three clusters.
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(a) Cluster 1 out of 4

(b) Cluster 2 out of 4

(c) Cluster 3 out of 4 (d) Cluster 4 out
of 4

Figure 1.5: Unsupervised Clustering of a Collection of Images from
Australia. From [81]. Clustering of the dataset into four clusters.



Chapter 1: Introduction 7

The major message behind the above example was to underline that an ab-
sence of a good answer to these questions creates even harder problems once
we advance to models with more than one level. Such models were demon-
strated to have better performance in practice in multiple recent works, of
which [16, 36, 42] are just a few examples. However, no formal statements
supporting these approaches have been proposed yet.

The reader is warned that this thesis will not provide an answer to the
complex problem presented in this motivation example. However it does
suggest some formulations and analyses that constitute substantial steps in
the direction of the high-level goal.

1.2 Outline

This thesis is divided into four parts. The first part, consisting of Chapter
2, is more philosophical and presents our view on how to formulate learning
questions. Here we define out-of-sample performance of unsupervised learn-
ing problems. We further point out that there are two types of semantically
different problems that are usually approached within the same framework
with co-clustering and define out-of-sample performance for each of the two
settings. The second part, consisting of chapters 3 to 5, is the mathematical
part of this work. In Chapter 3 we review and extend PAC-Bayesian gener-
alization bounds. In Chapter 4 we apply PAC-Bayesian bounds to perform
generalization analysis of co-clustering. In Chapter 5 we suggest how to
extend the analysis of co-clustering to more complex graphical models. The
third part, consisting of chapter 6, is algorithmic and presents algorithms
for minimization of the bounds developed in the second part. The last
part, consisting of Chapter 7, presents some applications to real life data.
In particular, using our algorithm for co-clustering we achieve state-of-the-
art performance in rating predictions in the MovieLens dataset. Chapter 8
discusses the results of this thesis and suggests some directions for future
research.
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1.3 Summary of Main Contributions

The main contributions of this thesis can be summarized as follows.

• To the best of our knowledge this is the first time that out-of-sample
performance of co-occurrence data analysis has been defined and an-
alyzed. Highlighting the difference between co-occurrence data and
functional data (such as in collaborative filtering) was also an impor-
tant step in proper analysis of both settings.

• Another contribution has to do with generalization bounds for discrim-
inative prediction and density estimation based on co-clustering. This
enables both theoretical and practical comparison of the co-clustering
approach to data analysis with completely different approaches such as
Probabilistic Latent Semantics Analysis and various forms of matrix
factorization.

• Several important extensions to the PAC-Bayesian bounds were de-
rived in this dissertation. One is an application of the PAC-Bayesian
framework to derive generalization bounds for discrete density estima-
tion.

• Another important extension of PAC-Bayesian bounds is the introduc-
tion of combinatorial priors. Combinatorial priors yield regularization
terms in the form of mutual information and are more appropriate to
combinatorial hypothesis spaces, as opposed to L2-norm normalization
resulting from Gaussian priors or L1-norm normalization correspond-
ing to Laplacian priors.

• It is shown here that the application of PAC-Bayesian bounds to co-
clustering can be extended to more general graphical models. In par-
ticular, generalization bounds for directed graphical models in a tree
shape and their moralized undirected counterparts are derived.

• Algorithms for minimization of the bounds for co-clustering are sug-
gested.
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• The application of minimization algorithms to the MovieLens dataset
resulted in state-of-the-art performance.

• As an excursus, it is shown that the bounds for co-clustering can be
reduced to obtain bounds for classification by a single feature. It
is further demonstrated that the bounds can be applied to feature
ranking and that such feature ranking is superior to feature ranking
by empirical mutual information or correlation with the label.
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Part I

Formulation
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Chapter 2

How to Formulate a

Learning Problem

Any good study should provide a clear definition of the question it is trying
to answer. It is claimed here that the current state of disarray in the field of
unsupervised learning is the result of the absence of a clear formulation of a
question that unsupervised learning is trying to answer. For that reason, the
first technical chapter of this work is devoted to rethinking the objectives
in unsupervised learning and structure learning. As a guide line it takes
the example of the much better developed field of supervised learning. We
argue that the beauty and clarity of supervised learning starts with a clear
definition of the learning objective. In this chapter we try to define its analog
for unsupervised learning.

2.1 Supervised vs. Unsupervised Workflow

The process of formulation and solution of most supervised learning prob-
lems, including online and batch learning [33, 31, 104, 22], can be mapped
onto the diagram in Figure 2.1.a. It starts with a definition of a learning
task. This is expressed in the selection of a label, which is the property
we want the learning algorithm to predict. Next, we select our learning
objective. This is expressed in the selection of the way we will measure the

13
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Define the 
Learning Task

Define the 
Learning 
Objective

Analyze the expected 
performance 

Derive the 
optimization 

objective

Find/Approximate 
the solution

(a) Supervised Learning

Derive the 
optimization 

objective

Find/Approximate 
the solution

(b) “Classical” Unsupervised Learning

Derive the 
optimization 

objective

Find/Approximate 
the solution

Analyze the expected 
performance 

(c) Unsupervised Learning with Stability
Analysis

Define the 
Learning Task

Define the 
Learning 
Objective

Analyze the expected 
performance 

Derive the 
optimization 

objective

Find/Approximate 
the solution

(d) Unsupervised Learning - Desired Framework

Figure 2.1: Typical framework for analysis of (a) supervised learning prob-
lems, (b) unsupervised learning problems, (c) analysis of unsupervised learn-
ing based on stability, and (c) the desired framework for analysis of unsu-
pervised learning. See text for details.
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errors in our predictions. Examples include zero-one loss, log-loss, quadratic
loss, and so on. This also incorporates the choice of whether we would like
to minimize the expected error, or the maximal error, the regret (in online
learning), etc. In some situations the selected objective is computationally
intractable and we are forced to replace it with a tractable relaxation. This
includes the example of replacement of the zero-one loss with hinge loss in
SVMs. In most cases it is possible to conduct a formal analysis and provide
guarantees (usually in the form of generalization bounds or regret bounds
in online learning) on the expected value of the objective for the solution.
Nowadays, most of successful classification algorithms are accompanied by
such generalization guarantees and many were derived as algorithms for op-
timization of the guaranteed generalization performance. Finally, the orig-
inal or relaxed version of the learning objective is solved or approximated.
The existence of the theoretical analysis and the formal guarantees enable
theoretical comparison of completely different and unrelated approaches to
solving the same problem, such as SVMs and decision trees, for example.
This was the impetus for the development of supervised learning in recent
decades. However all this was possible because there was a well-defined
learning task.

Most unsupervised learning approaches start directly from the formu-
lation of the learning functional, as shown in Figure 2.1.b. Possibly the
most famous example is the k-means objective, where we want to find
k centroids, so that the average distance of points to the nearest cen-
troids

∑
i min{cj}kj=1

‖xi − cj‖2 is minimized [33]. This is far from being
the only formulation of the objective and multiple alternative formulations
exist [47, 106], but it is impossible to compare solutions that optimize dif-
ferent optimization objectives, since the objectives are unrelated. It is also
not clear how to perform model order selection; namely, how to compare
a clustering solution with two clusters to a clustering solution with three
clusters.

This problem, especially in the context of clustering, has troubled multi-
ple researchers [105]. In recent years extensive attempts have been made to
address the question of model order selection in clustering from the point of
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view of its stability [15, 85, 86, 87, 14, 58]. This approach provides an exter-
nal analysis of optimization solutions of a given objective and is depicted in
Figure 2.1.c. Although it was proved that in a large sample regime stability
can be used for model order selection [87], no lower bounds on the minimal
sample size required for stability estimates to hold can be proved, and in
fact in certain cases stability indices based on arbitrarily large samples can
be misleading [14]. Since in any practical situation the amount of data avail-
able is limited, currently existing stability indices cannot be used for reliable
model order selection. Furthermore it is not clear whether stability indices
can be used to compare between solutions based on different optimization
objectives.

This leads to one of the major points explored in this dissertation. We
argue that one does not learn structure (e.g., clustering) just for the sake
of learning structure, but rather in order to solve some higher level task.
Thus, we should evaluate structures in terms of their utility in solving a
given high-level task. This is expressed in the diagram in Figure 2.1.d. In
section 2.2 we show how to map the suggested workflow on a real problem
of co-clustering.

The idea to consider structure learning in the context of a higher level
task was inspired by the Information Bottleneck (IB) principle [99, 90, 92,
84]. The IB principle considers the problem of extracting information from
a random variable X that is relevant for prediction of a random variable Y .
The relevance variable Y defines the high level task, which is a prediction
task in this case. The extraction of relevant information from X is done by
means of clustering of X into clusters X̃ [99]. In other words, IB is looking
for the structure X̃ of X that is relevant for prediction of Y . The IB principle
was further extended to graphical models in [92]. It is important to note that
the requirement to compress X is an important part of the high level task in
IB. In Chapter 5 we prove that if the high level task is solely the prediction
of Y , clustering of X is not the optimal way to improve the predictions, but
it is better to smooth the empirical conditional distributions.

The idea to look at generalization properties of clustering also appeared
in [55, 56, 54], where Krupka and Tishby analyze a scenario where each
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object instance has multiple properties and only a fraction of the properties
is observed. The illustration they provide is the following: assume you are
presented with multiple fruits and you observe their parameters such as
size, color, and weight. Then you can cluster the fruits by their observed
parameters in order to facilitate prediction of unobserved parameters such
as taste and toxicity. The approach of Krupka and Tishby to this problem
can be mapped onto the diagram in Figure 2.1.d. Namely, they have a well-
defined objective to predict the unobserved properties, they define some loss
function for incorrect predictions, they suggest an analysis of generalization
properties of the clustering-based approach, and finally provide an algorithm
to solve the corresponding optimization problem.

In section 2.2 we show that the framework suggested in Figure 2.1.d
can also be used to analyze other forms of prediction based on clustering
in addition to those suggested in [55, 56, 54]. Furthermore the bounding
techniques developed in chapters 3 and 4 can be used to improve the bounds
in [55, 56, 54].

2.1.1 The Minimum Description Length Principle (MDL)

A popular and related regularization approach that is applied in both su-
pervised and unsupervised learning and deserves special attention is the
Minimum Description Length Principle (MDL) [40]. The MDL principle
suggests that a solution to a problem should be evaluated by the total de-
scription length of the train data, which is the description length of the
selected model plus the description length of the data given the model. For
example, one clustering solution is better than another if it describes more
compactly the data at hand. The MDL approach has many of the properties
that we want our solution to have: it enables comparison of different solu-
tions in an objective manner, can perform model order selection and even
compare solutions based on different optimization approaches (for example,
PCA dimensionality reduction [33] and clustering). Thus, MDL provides a
good indication that it is possible to answer these questions in an objec-
tive manner. However, MDL does not address the question of the expected
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out-of-sample performance. In fact it has been shown that MDL solutions
tend to overfit the data [49]. This observation is further supported by our
experiments in Chapter 7. This is not very surprising, because MDL solves
the question of data compression, but in situations when the obtained model
is used for purposes other than compression of the train data, for example
to make predictions on new data, MDL is not the appropriate criterion.

Interestingly, in the solutions we obtain in chapter 3, MDL solutions
coincide with generalization bounds in situations when there is no noise in
the data generating process, or, more precisely, when the selected model
achieves zero empirical loss.

2.2 Case Study: Analysis of Data in the Form of

a Matrix

In this section we show how to apply the workflow suggested in Figure 2.1.d
to formulate the problem of analysis of data in the form of a matrix. “Data
in the form of a matrix” is defined here as a data matrix in which rows and
columns are of a “similar nature”. For example, in a matrix of viewers by
movies in collaborative filtering, the rows (viewers) are of a similar nature, as
are the columns (movies). In other words, it makes sense to group together
similar viewers, or to group together similar movies. However, a data matrix
of cars by car parameters, e.g., fuel consumption, engine power, price, is not
the kind of data considered in this section, since its columns are not of a
similar nature - it does not make sense to group together engine power and
car price.

We start with the observation discussed in [80, 83] that there are actually
two types of data matrices that require different treatment. In the next two
subsections we give an example of each of the problems and formulate the
corresponding learning tasks and objective functionals. Then we show how
these objective functionals are transformed into objectives for co-clustering.
The co-clustering objective is further analyzed in chapter 4.
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2.2.1 Functional Data and Objective Functional for Discrim-

inative Prediction

Our first example is collaborative filtering [43]: here, one is given a matrix of
viewers by movies with ratings, e.g. on a five-star scale, given by the viewers
to the movies. The matrix is usually sparse, as most viewers have not seen
all the movies. In this problem our task is usually to predict the missing
entries. Thus, if we denote the viewer IDs by X1, the movie IDs by X2,
and the rating values by Y , our goal is to build a discriminative predictor
q(Y |X1, X2). We use the term functional data to emphasize the fact that Y
(the entries of the matrix) is a function of X1 and X2. Let l(Y ′, Y ) be a loss
function for predicting Y ′, when the real rating is Y . The most commonly
used loss functions are the zero-one loss l(Y ′, Y ) = 1 − δ[Y ′, Y ], where δ is
the Kronecker delta function, absolute loss l(Y ′, Y ) = |Y ′−Y |, or quadratic
loss l(Y ′, Y ) = (Y ′−Y )2. Let p(X1, X2, Y ) be the true unknown distribution
over 〈X1, X2, Y 〉. A natural and commonly used way to define the learning
objective for q is:

min
Parameters of q

Ep(X1,X2,Y )Eq(Y ′|X1,X2)l(Y
′, Y ). (2.1)

In section 2.2.4 we show how this general learning objective is transformed
into a learning objective for the co-clustering approach to solving this prob-
lem.

2.2.2 Co-occurrence Data and Objective Functional for Den-

sity Estimation

Our second example is the word-documents co-occurrence data analysis in
text mining [93, 35, 32]. Word-documents co-occurrence matrices are ma-
trices of words by documents with the number of times each word occurred
in each document counted in the corresponding entries. If normalized, such
a matrix can be regarded as an empirical joint probability distribution of
words and documents; hence the name co-occurrence data. To illustrate
the difference between co-occurrence data and functional data we point out
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that if we extend the viewers-by-movies matrix in collaborative filtering by
adding more viewers and more movies, the ratings already present will not
change. However, if we extend the word-documents co-occurrence matrix by
adding more words and more documents, the joint probability distribution
(the entries in the normalized co-occurrence matrix) will change.

Although many researchers have analyzed this problem by clustering
similar words and similar documents [93, 35, 32, 98], or by using proba-
bilistic Latent Semantic Analysis (pLSA) and probabilistic Latent Semantic
Indexing (pLSI) [45, 46] and other approaches, no clear learning task for this
problem has been defined. In [83] we suggested one possible way to define
such a task. Denote the words byX1 and the documents byX2. Assume that
there is an unknown joint probability distribution p(X1, X2) over words and
documents. And assume that the co-occurrence matrix at hand is a sample
from that distribution. Our task is to learn this joint probability distribu-
tion, or, in other words, to build a density estimator q(X1, X2) that will
provide good predictions of co-occurrence events generated by p(X1, X2).
We can write this objective formally as:

min
Parameters of q

−Ep(X1,X2) ln q(X1, X2). (2.2)

The choice of the logarithmic loss is natural in the context of density es-
timation. In particular, it corresponds to the expected code length of an
encoder that uses q(X1, X2) to encode samples generated by p(X1, X2) [27].

By evaluation of (2.2) it is possible to compare different approaches
to solving this problem (e.g., co-clustering and pLSA), as well as perform
model order selection. Next we show how the above objective is expressed
in co-clustering and further analyze the co-clustering example in chapter 4.

2.2.3 Co-clustering

Co-clustering is a widely used method for analysis of data in the form of
a matrix by simultaneous clustering of rows and columns of the matrix
[9]. In this thesis we focus solely on co-clustering solutions that result in
a grid form partition of the data matrix, as in Figure 2.2. This form of
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Figure 2.2: Illustration of a hard grid form partition of a data ma-
trix. Soft grid partitions are considered as distributions over hard grid
partitions.

co-clustering is also known as partitional co-clustering [9], checkerboard bi-
clustering [23, 51], grid clustering [31, 82, 83], and box clustering. Note
that some authors use the terms co-clustering and bi-clustering to refer to a
simultaneous grouping of rows and columns that does not result in a grid-
form partition of the whole data matrix [41, 64], but these forms of partitions
are not discussed in this work. Note as well that we allow soft assignments
of rows and columns to their clusters, as opposed to common co-clustering
approaches which require hard assignments [32, 9]. Finally, the analysis
presented here is not limited to two-dimensional data matrices.

In the past decade co-clustering has successfully been applied in multiple
domains, including clustering of documents and words in text mining [93, 35,
32, 98], genes and experimental conditions in bioinformatics [23, 26, 51, 25],
tokens and contexts in natural language processing [37, 73, 62], viewers and
movies in recommender systems [38, 80], etc. Although Banerjee et. al. [9]
suggested a unified framework for applying co-clustering in all the aforemen-
tioned domains, as we have already seen in sections 2.2.1 and 2.2.2 they are
actually divided into two types that require different treatment. The ob-
jective functionals for discriminative prediction and for density estimation
with co-clustering resulting from (2.1) and (2.2) are derived in the next two
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sections.

2.2.4 Discriminative Prediction with Co-clustering

Let us return to the collaborative filtering example. One possible way to
approach this problem is to cluster similar viewers, to cluster similar movies,
and then to predict the missing entries by filling in the missing entries within
each partition cell with the most frequent or average rating within that cell.
More formally and generally, let us denote by q(C1|X1) a stochastic rule
that maps viewers to clusters of viewers, by q(C2|X2) a stochastic rule that
maps movies to clusters of movies, and by q(Y |C1, C2) a stochastic rule that
given a partition cell 〈C1, C2〉 predicts a rating Y . Within this model:

q(Y |X1, X2) =
∑
C1,C2

q(Y |C1, C2)q(C1|X1)q(C2|X2) (2.3)

and the general objective in (2.1) is reduced to

min
q(C1|X1),q(C2|X2),

q(Y |C1,C2)

Ep(X1,X2,Y )

∑
C1,C2,Y ′

q(Y ′|C1, C2)q(C1|X1)q(C2|X2)l(Y ′, Y ),

(2.4)
where the set of distributions {q(Y |C1, C2), q(C1|X1), q(C2|X2)} defines our
co-clustering model.

In words, we say that we have found an interesting partition of viewers
into clusters of viewers and of movies into clusters of movies if this partition
is able to predict the ratings that the viewers assign to the movies. Similarly,
in the context of gene expression data analysis we say that we have found
an interesting partition of genes and conditions if this partition is able to
predict the expression levels.

Bear in mind that we make no restrictions or assumptions regarding the
true distribution p(X1, X2, Y ). Our only assumption is regarding the form
of the prediction model q(Y |X1, X2) we use, given in (2.3). In chapter 4 we
provide a formal analysis of the objective (2.4) that was suggested in [82].
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2.2.5 Density Estimation with Co-Clustering

Next we consider the word-documents co-occurrence data analysis example.
Let q(C1|X1) and q(C2|X2) denote soft assignments of words to clusters of
words and documents to clusters of documents respectively. Let q(C1, C2)
be our model for the joint probability distribution of word clusters and
document clusters. We can then model the joint probability distribution of
words and documents q(X1, X2) as:

q(X1, X2) =
∑
C1,C2

q(C1, C2)q(X1|C1)q(X2|C2). (2.5)

Using Bayes’ rule we can rewrite this as:

q(X1, X2) =
∑
C1,C2

q(C1, C2)
q(X1)
q(C1)

q(C1|X1)
q(X2)
q(C2)

q(C2|X2), (2.6)

which will be shown to be more convenient for analysis and application later
in chapter 4. Then our objective (2.2) becomes:

min
q(C1|X1),
q(C2|X2)

−Ep(X1,X2) ln

 ∑
C1,C2

q(C1, C2)
q(X1)
q(C1)

q(C1|X1)
q(X2)
q(C2)

q(C2|X2)

 ,
(2.7)

where {q(C1|X1), q(C2|X2)} define our co-clustering model (in chapter 4 we
show that other distributions in (2.6) are induced by {q(C1|X1), q(C2|X2)}
and the empirical sample given in the data matrix, and thus are not part of
the optimization).

In words, we have found a good clustering of words and a good clustering
of documents if it is able to predict new co-occurrence events generated
by p(X1, X2). We stress that there are no assumptions or restrictions on
p(X1, X2) in (2.7). Our only assumptions are on the form of the prediction
model we use, given in (2.6).
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2.2.6 Other Approaches to Matrix Data Analysis and Dis-

cussion

Co-clustering is clearly not the only means to analyze data matrices. Other
methods include pLSA and pLSI [45, 46] and other forms of matrix factor-
ization [94]. To date we are only aware of generalization analysis of low-rank
[95] and low-norm [96] outer product matrix approximations. The main con-
tributions of our work in this respect can be summarized in the following
points:

• In [82] we derived a generalization bound for discriminative predic-
tion based on co-clustering (reproduced in Chapter 4). The bound
enables theoretical comparison of co-clustering with other approaches
to matrix data analysis.

• In [83] we suggested a possible definition of a high level task solved in
co-occurrence data analysis (reproduced in section 2.2.2). This enables
theoretical and practical comparison of co-clustering to other unrelated
approaches to this problem, like LSA, that was not possible in the past.

• In [83] we suggest a generalization bound for co-occurrence data anal-
ysis based on co-clustering (reproduced in Chapter 4).

There is one appealing property that distinguishes co-clustering from
other factor models like pLSA. This is the clear interpretation of the meaning
of hidden variables of the model (cluster variables in this case). Whereas a
cluster of viewers or a cluster of movies is easy to understand, the factors
(hidden variables) returned by factor models like pLSA are much harder to
interpret.

2.3 Beyond Matrix Data Analysis

The framework suggested in Figure 2.1.d can be applied to define generaliza-
tion properties in other unsupervised learning models beyond co-clustering.
One of the most popular unsupervised learning tasks is learning of mixtures
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of Gaussians [33] and in general other mixture models. Following our frame-
work we can state that we have learned a good mixture model if it is able
to predict new events generated by the same unknown probability distribu-
tion that generated the train set. For example, let p(X̄) be an unknown
probability distribution over X̄ ∈ Rd. Let q(X̄) =

∑k
i=1 q(Ci)q(X̄|Ci) be

the mixture model with k components (e.g., a mixture of k Gaussians). Our
framework suggests analyzing and evaluating the mixture model by bound-
ing −Ep(X̄) ln q(X̄). This analysis is subject to future work.

In chapter 5 we show that models (2.3) and (2.6) suggested for co-
clustering correspond to some simple forms of graphical models. We further
suggest how the results of chapter 4 can be extended to analyze and derive
generalization bounds for more general graphical models.

2.4 Beyond Prediction

The framework suggested in Figure 2.1.d does not limit the high level task to
a prediction task. It is possible to analyze the advantages of structure-based
models in other contexts. For example:

• Situations where we are not limited to a single prediction question, but
rather a range of questions, when the exact questions we have to answer
are not known in advance, for example, the touchstone formulation
[88].

• Problems of control. For example, it may be easier to control or influ-
ence a process (e.g., our own hand or some tool) if we have a simple
representation of its structure, rather than a high-dimensional kernel.

Structure-based models can also be preferable when computation or mem-
ory constraints are imposed. Moreover, it is not a-priori clear in questions
of prediction whether structure-based approaches can outperform unstruc-
tured approaches like SVMs for example. Vapnik’s well-known postulate
states that “one should not solve a harder problem on the way to solving
a simpler problem” [104]. Structure learning is an extra effort that is not
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justified in the context of a pure prediction task. However, we know that
as humans we perceive the world around us in a structured manner. Thus
there must be advantages that we gain from the knowledge of structure.
Otherwise, living beings would have developed some SVM classifiers during
the process of evolution. The most distinctive advantage of structure-based
models is understanding and simplification of the underlying processes and
phenomenons. But in order to build computational models that are able
to understand the data it is essential to quantify the notion of understand-
ing or at least to be able to compare the level of understanding gained by
different approaches, similar to the way we can measure who out of two
students understood a course better. We conjecture that quantification of
understanding should be done in the context of its potential applications.
For example, one student can understand the course better to pass a written
exam, but his schoolmate will outperform him in an oral exam, because it
tests other type of understanding. Thus, the analysis of structure learn-
ing in the context of prediction tasks is just a small step on the way to
quantification of knowledge and development of algorithms that are able to
understand the data.
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Chapter 3

PAC-Bayesian

Generalization Bounds

This chapter reviews some known tools and develops some novel ones for
the analysis of learning algorithms. As mentioned in Chapter 2, one natural
way to evaluate learning algorithms is to look at their expected performance
on new data. A common approach to analysis of the expected performance
is the Probably Approximately Correct (PAC) learning model [100, 50].
The most basic and distinctive property of this learning model is that the
performance of a learning algorithm is evaluated with respect to the true
distribution p that generates the data and no assumptions or restrictions on
p are made.

The PAC learning model can be opposed to the Maximum Likelihood
(ML) learning model [33]. In the ML learning model one is looking for a
model q that maximizes the likelihood of the train set. In most real-life
situations ML learning ends up overfitting the data.

A stronger learning model that the PAC model can be compared and
contrasted with is the Bayesian learning model [63, 70]. The major dif-
ference between the PAC model and Bayesian inference is that in Bayesian
inference it is assumed that the data are generated by some concept that be-
longs to the hypothesis class we are learning with. This assumption usually
does not hold or holds only approximately when we analyze real-life data.

29
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The Bayesian learning model is closely related to the MDL principle and
MDL regularization [70, 40]. Similar to MDL, the Bayesian learning model
does not provide guarantees on the expected performance on new data and
thus is also prone to overfitting [49]. The PAC learning model makes no
assumptions on the generating process and provides strict guarantees on
the expected performance on new data. However, this often comes at the
expense of underfitting the data [49]. This lack of tightness is the usual
criticism made of PAC analysis.

The lack of tightness in PAC analysis is a result of its attempt to be
as general as possible. In other words, posing no restrictions on the data
generating distribution p requires the analysis to be strict enough to hold
in the worst case. The fact that the real-life data in many situations do not
follow the worst case scenario results in underfitting. However, this is only
half of the reason for the lack of tightness of PAC analysis. The other half is
the uniform treatment of all hypotheses in a hypothesis set. In other words,
the PAC bounds hold uniformly for all the hypotheses in a given hypothesis
set [104]. PAC-Bayesian bounds introduce non-uniform treatment of the
hypotheses according to some prior partition of the hypothesis space [68, 76].
In situations where we are able to find some good partition of the hypothesis
space we can improve the tightness of the bounds considerably. In the
applications part we demonstrate that PAC-Bayesian bounds are able to
achieve a remarkable 10%-20% distance from the test error.

Since the strength of PAC-Bayesian analysis lies in its ability to han-
dle heterogeneous hypothesis spaces, this is also the domain where it has a
significant advantage over traditional PAC analysis. There are two possible
ways to introduce heterogeneity to a hypothesis space. The first is by using
some “natural heterogeneity”, as for example, in decision trees: we can par-
tition the class of all possible decision trees, even of unlimited depth, into
subclasses according to the tree depth. The second is by introducing a use-
ful nonuniform partition of a homogeneous hypothesis space, for example,
in the analysis of SVMs we can partition the class of all possible separat-
ing hyperplanes in Rd into subclasses according to the size of the margin
[69, 59]. Note that the VC-dimension [102, 104, 31] of the class of decision
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trees of unlimited depth as well as the separating hyperplanes in Rd for
infinite-dimensional spaces (e.g., resulting from the use of RBF kernels [29])
is infinite. Thus, according to classical PAC theory it is impossible to learn
with these hypothesis sets [50, 31, 104]. However, we will see in this chapter
that PAC-Bayesian bounds enable learning with these hypothesis sets, al-
though in a mildly different sense (thus we do not disprove the results of PAC
theory, but only extend them slightly). Advantageously, the PAC-Bayesian
bounds depend mainly on the complexity of the selected hypothesis and
only slightly on the complexity of the whole hypothesis class, whereas PAC
bounds characterize the whole hypothesis class by its VC-dimension and do
not differentiate between hypotheses.

In structure learning the hypothesis class usually has a natural partition
dictated by the complexity of the structure. Thus, PAC-Bayesian bounds
are a handy tool for formal analysis of structure learning. In the next chapter
we illustrate this using the example of co-clustering.

For completeness of the presentation we start by citing some well known
results in measure concentration, then compare the PAC learning model to
the learning model in PAC-Bayesian analysis and then gradually present
PAC-Bayesian bounds and our results in this domain.

3.1 Background

3.1.1 Measure Concentration

The major work horse for a significant part of analysis done in computa-
tional learning theory is based on the effect of measure concentration. Mea-
sure concentration bounds suggest how fast (if at all) empirical observations
converge to their expected values [19]. In this work two basic results of
measure concentration are used:

Theorem 3.1 (Markov’s inequality). Let X be any random variable and
ε > 0, then

P{|X| ≥ ε} ≤ E|X|
ε

. (3.1)



32 Chapter 3: PAC-Bayesian Generalization Bounds

Theorem 3.2 (Hoeffding’s inequality [44]). Let X1, .., XN be independent
bounded random variables such that Xi falls in the interval [ai, bi] with prob-
ability one. Denote their average by SN = 1

N

∑N
i=1Xi. Then for any ε > 0:

P{SN − ESN ≥ ε} ≤ e−2ε2N2/
∑N

i=1(bi−ai)
2

(3.2)

and
P{SN − ESN ≤ −ε} ≤ e−2ε2N2/

∑N
i=1(bi−ai)

2
. (3.3)

An elegant proof of the latter theorem can be found in [19]. A related
Chernoff-Hoeffding bound suggests a tighter concentration for zero-one vari-
ables, but before stating the bound we define the Kullback-Leibler (KL)
divergence [57] between two probability distributions P (X) and Q(X) as:

D(P‖Q) = EP (X) ln
dP (X)
dQ(X)

. (3.4)

For two Bernoulli distributions p(X) and q(X) with biases p and q respec-
tively we overload the definition as:

Db(p‖q) = p ln
p

q
+ (1− p) ln

1− p
1− q

. (3.5)

The KL divergence between p and q can be bounded from below by their
square distance [27]:

Db(p‖q) ≥ 2(p− q)2. (3.6)

With the above definitions we state the Chernoff-Hoeffding bound.

Theorem 3.3 (Chernoff-Hoeffding bound [24, 44]). Let X1, .., XN be in-
dependent bounded random variables such that Xi ∈ {0, 1}. Denote their
average by SN = 1

N

∑N
i=1Xi. Then for any ε > 0:

P{SN − ESN ≥ ε} ≤ e−Db(ESN +ε||ESN )N ≤ e−2ε2N (3.7)

and
P{SN − ESN ≤ −ε} ≤ e−Db(ESN−ε||ESN )N ≤ e−2ε2N , (3.8)
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In the context of learning theory it is often assumed that the train set
is a set of N independent identically distributed (i.i.d.) samples. In such a
situation the errors of a fixed predictor (hypothesis) h are also i.i.d. Let Zi
be the error of h on sample i and denote by L̂(h) = 1

N

∑N
i=1 Zi the empirical

loss of h on the train set and by L(h) = EZi the expected loss of h. Assume
we are in the context of zero-one loss, then by (3.8):

P{L(h) ≥ L̂(h) + ε} ≤ e−2ε2N (3.9)

and by combination of (3.7) and (3.8):

P{|L(h)− L̂(h)| ≥ ε} ≤ 2e−2ε2N . (3.10)

We can conclude that we can use the empirical loss of h, L̂(h), as an esti-
mator of the expected loss of h, L(h). The right-hand side of (3.9) or (3.10)
is termed confidence and is denoted by δ, e.g. δ = 2e−2ε2N in (3.10) which
we read as: “with a probability greater than 1− δ, L̂(h) is ε-close to L(h)”.
This way of reading (3.10) is actually the reason for the name “PAC learning
model”: Probably - with a probability greater than 1− δ; Approximately -
up to ε. The probability is over the choice of the sample (since each Zi is a
function of the sample), i.e., for most samples |L̂(h)− L(h)| < ε, but there
is a chance δ that for the sample we observe |L̂(h)− L(h)| ≥ ε.

3.1.2 Sample Complexity and Generalization Bounds

All learning algorithms do not operate with a single hypothesis, but rather
with a class of hypotheses H. Simultaneous analysis of what happens to
|L̂(h) − L(h)| for all h ∈ H as a function of a random sample selection
is one of the major technical challenges of computational learning theory.
But before touching on this point it should be pointed out that there are
three interrelated “players” in (3.9) or (3.10): precision ε, sample size N ,
and confidence δ. Thus, we can set two of them and see what happens to
the remaining one. More specifically, we can set ε and inquire the minimal
sample size N which is required to achieve ε-precision with a probability
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greater than 1 − δ. This is the sample complexity of a learning problem.
Alternatively, we can set N and ask: “given a sample of size N how far can
L(h) be from L̂(h) with confidence greater than 1− δ”. This is the question
behind generalization bounds. As we will see below generalization bounds
can be derived in situations where sample complexity bounds do not exist,
but not vice-versa.

3.1.3 PAC vs. PAC-Bayes

PAC-Bayesian analysis exhibits the most basic feature of PAC learning -
it makes no assumptions about the distribution that generates the data in
the sense that PAC-Bayesian bounds hold for any distribution that could
generate the data, even one that does not belong to the hypothesis class
H we are learning with. However, there are multiple small details that
distinguish PAC-Bayesian analysis from the classical PAC framework and
eventually provide interesting results even in situations when a problem is
not learnable in the strict PAC sense. We devote this section to a brief
overview of PAC learning and its distinctions from PAC-Bayesian bounds.

The definition of PAC learnability states that [100, 50]:

Definition 3.1. A hypothesis class H is PAC-learnable if for any distribu-
tion D over the data and for any ε, δ ∈ (0, 1

2) there exists N polynomial in
ε, δ and a polynomial learning algorithm A that given an i.i.d. sample of
size N from D returns h ∈ H that satisfies with a probability greater than
1− δ over the sample selection and internal randomization of A:

L(h) ≤ inf
h′∈H

L(h′) + ε. (3.11)

This definition of PAC learnability refers to sample complexity. More-
over, (3.11) is a regret bound, as it looks at the distance between per-
formance of the classifier returned by A and the performance of the best
classifier in H. Note that we do not know the value of infh∈H L(h); thus
the absolute value of L(h) is known only implicitly through the fact that
we know that it is close to L̂(h) with high probability. This point is the
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first difference between PAC learning and PAC-Bayesian bounds. In PAC-
Bayesian bounds we do not look at the distance between the performance
of the classifier found and the performance of the best classifier in H, but
rather bound the expected performance L(h) directly. We claim that in
many practical situations it is sufficient to know the expected performance
of the classifier returned. Moreover, for sufficiently rich hypothesis classes
it may be impractical to get arbitrarily close to infh∈H L(h) given a finite
dataset, but still possible to find h ∈ H with satisfactory guarantees on L(h)
from a practical point of view. This makes it possible to obtain interesting
results with PAC-Bayesian bounds even in situations when the hypothesis
class H is not PAC learnable.

As already mentioned, for a hypothesis class H the statement (3.10) on
|L̂(h) − L(h)| does not hold simultaneously for all h ∈ H. If H is finite we
can apply the union bound to obtain a statement of a form:

P{∃h ∈ H : |L̂(h)− L(h)| ≥ ε} ≤ 2|H|e−2ε2N = 2e−2ε2N+ln 2|H|, (3.12)

where |H| is the cardinality of H. Thus, for significantly large N [namely,
for N > 1

2ε2
(ln |H| + ln 2

δ )], L̂(h) will be sufficiently close to L(h) for all
h ∈ H and if we select

ĥ = arg min
h∈H

L̂(h) (3.13)

it will satisfy (3.11) with high probability [50]. Equation (3.13) is known
as the empirical risk minimization approach [104]. It should be noted at
this point that (3.13) treats all h ∈ H uniformly. The uniform treatment is
inevitable if we want to obtain regret bound statements such as (3.11), since
in order to do so we need |L̂(h)−L(h)| to be small for all h ∈ H. However,
if we bound L(h) itself, but not its distance to the optimum, we can apply
non-uniform treatment and derive much more interesting conclusions even
for finite hypothesis classes, as in the example of co-clustering analyzed in
Chapter 4.

The problem becomes more complicated when the hypothesis set H is
infinite, since in that case we cannot apply the union bound, at least not
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directly. In this situation there are two things we can do: cover the error
space or cover the hypothesis space (or both).

The typical path of PAC analysis is to cover the error space. The first
approach to covering the error space was developed by Vapnik and Chervo-
nenkis [101, 102]. For a hypothesis space H of binary classification functions
that map the inputs X ∈ X to zero-one labels h : X 7→ {0, 1} Vapnik and
Chervonenkis defined the VC-dimension of H, which we denote by V C(H),
as the maximal number N of points in X that can be classified in all the 2N

possible ways by functions h ∈ H [102, 50]. For example, the VC-dimension
of separating hyperplanes in Rd is d + 1, the VC-dimension of separating
hyperplanes with margin γ for points bounded within a unit ball in Rd is
bounded by min( 1

γ2 , d) + 1, and the VC-dimension of polynomials of degree
d is d + 1. Vapnik and Chervonenkis further proved that for hypothesis
classes with bounded VC-dimension:

P{∃h ∈ H : |L̂(h)− L(h)| ≥ ε} ≤ 4
(

2eN
d

)d
e−Nε

2/8, (3.14)

where d = V C(H) [102, 31, 20].

From (3.14) we can conclude that when N is large with respect to ε2, ln d,
and ln δ with high probability |L̂(h) − L(h)| will be small for all h ∈ H
simultaneously and the empirical risk minimizer (3.13) will satisfy (3.11).

Bear in mind that (3.14) is ignorant of the sample and holds uniformly for
all h ∈ H. In later works Rademacher and Gaussian complexities were sug-
gested to replace the VC-dimension in (3.14) [53, 10, 12, 20]. Rademacher
and Gaussian complexities enable data-dependent estimation of the rich-
ness of a hypothesis class H. They provide tighter bounds compared to
VC-dimension bounds in situations when the data distribution p is concen-
trated on the regions of X in which the richness of H is not fully expressed.
However, the treatment is still uniform for all h ∈ H. Thus, although
tighter than VC-bounds, they are still not satisfactory for nonhomogeneous
hypothesis classes. Another technical problem with Rademacher and Gaus-
sian complexities is that in most practical situations they cannot be written
in a closed form and thus are problematic for gradient descent optimization.
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Concentration of measure results such as (3.14) can also be used to derive
generalization bounds. We can make the bounds even tighter by taking the
one-sided version of (3.14):

P{∃h ∈ H : L(h) ≥ L̂(h) + ε} ≤ 2
(

2eN
d

)d
e−Nε

2/8. (3.15)

By denoting the right-hand side of the inequality by δ we obtain that with
a probability greater than 1− δ:

L(h) < L̂(h) +

√
8
(
d ln

(
2eN
d

)
+ ln

(
2
δ

))
N

(3.16)

for all h ∈ H.

In the next section we present the first and the simplest approach to
derivation of generalization bounds by covering the hypothesis space and
then show how it can be combined with covering the error space.

3.2 Occam’s Razor

To develop some intuition about an approach to hypothesis space covering
we start with a simpler case, where H is countable.

Theorem 3.4 (Occam’s razor). For any data generating distribution and
for any “prior distribution” P(h) over H with a probability greater than 1−δ
over drawing an i.i.d. sample of size N , for all h ∈ H simultaneously:

L(h) ≤ L̂(h) +

√
− lnP(h)− ln δ

2N
. (3.17)

Proof. The proof is fairly simple and provides a good illustration of what
the “prior distribution” P(h) is. By Chernoff-Hoeffding’s bound (3.8)

P{L(h)− L̂(h) ≥ ε(h)} ≤ e−2Nε(h)2 (3.18)
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for any given h ∈ H. We use the notation ε(h) to emphasize that the bound
on L(h)− L̂(h) is designed for each hypothesis individually. We require that

e−2Nε(h)2 ≤ P(h)δ (3.19)

for some prior P(h) that satisfies
∑

h∈H P(h) ≤ 1. Then, by the union
bound on (3.18)

L(h) ≤ L̂(h) + ε(h)

for all h ∈ H with a probability greater than 1 − δ. The minimal value of
ε(h) that satisfies the requirement (3.19) is

ε(h) =

√
− lnP(h)− ln δ

2N
,

which completes the proof.

Note that the role of the prior P(h) is to define a different tradeoff
between ε(h) and δ(h) for each hypothesis h ∈ H.

3.2.1 Application Example: Generalization Bound for Deci-

sion Trees

We illustrate the power and the beauty of Occam’s razor bound by using a
decision trees example. Let T be the hypothesis class of all binary decision
trees of unlimited depth. For simplicity assume that all trees in T are
complete (i.e., for a given t ∈ T all the leaves of t are at the same depth).
Note that the VC-dimension of T is infinite, and thus it is not learnable in
the strict PAC sense.

Let us denote by Td the subset of T of trees of depth d. Then T =⋃∞
d=0 Td. For a given t ∈ T let us denote by d(t) the depth of t. It is easy

to verify that:

P(t) =
1

2d(t)+1

1
22d(t)

(3.20)

is a legal prior over T . By Occam’s razor theorem, with a probability greater
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than 1− δ:

L(t) < L̂(t) +

√
ln(2)(2d(t) + d(t) + 1)− ln(δ)

2N
(3.21)

for all t ∈ T .

Note that the VC-dimension of Td is d. Thus, if we restrict ourselves
to trees of depth d, by regular PAC bound (3.12) (or, more precisely, its
one-sided version) we obtain that with a probability greater than 1− δ:

L(t) < L̂(t) +

√
ln(2)(2d(t))− ln(δ)

2N
(3.22)

for all t ∈ Td. By the negligible addition of ln(2)(d(t) + 1) in (3.21) we are
able to consider the whole T and for each t ∈ T the bound (3.21) is almost
as tight as (3.22) which is obtained if we restrict the hypothesis space to Td.

In this example the prior P(t) defined in (3.20) is a “natural” prior over
T . The prior P(t) reflects the complexity of a tree t, which corresponds to
the size of the subclass Td(t) of “equivalently complex” trees that t belongs
to. Or, looking at it the other way around, the prior P(t) defined in (3.20)
suggests a meaningful partition of the infinite class T into subclasses Td
according to their complexity.

Prior knowledge about a problem can be used to increase the prior of
certain trees and to improve the bound in the case where prior knowledge
reflects reality. However, in this example it is useful only in situations where
it can break the symmetry within Td-s. Since (3.21) is already very close
to (3.22) prior knowledge about tree depth does not introduce a significant
improvement in the bounds.

A slightly tighter (but also more complicated) analysis of the decision
trees is suggested in [65].
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3.2.2 Occam’s Razor for Countable Unions of Bounded VC-

dimension Hypothesis Classes

It is possible to combine Occam’s razor technique for covering hypothesis
spaces with techniques for covering the error spaces we briefly reviewed
in section 3.1.3. This combination can be used to derive generalization
bounds for uncountably large hypothesis spaces H in cases where H can be
presented as a countable union of subspaces with a bounded VC-dimension.
For example, H can be a hypothesis class of all polynomials of unbounded
degree. Just as in the case of the decision trees, the VC-dimension of H is
infinite.

We let H =
⋃∞
d=1Hd, where Hd is a subspace of H, which has VC-

dimension d [for instance, a subset of polynomials of degree (d − 1)]. We
define a prior P(Hd) = 1

2d over H. Then we require that the right-hand
side of (3.16) for each Hd be bounded by P(Hd)δ. Following the lines of
the proof of Occam’s razor theorem for P(Hd) = 2−d we obtain that with a
probability greater than 1− δ

L(h) < L̂(h) +

√√√√8
(
d(h) ln

(
2eN
d(h)

)
+ ln

(
2
δ

)
+ d(h) ln 2

)
N

(3.23)

for all h ∈ H, where d(h) is the VC-dimension of the subspace Hd that h
belongs to. As in the example of decision trees, simultaneous treatment of
all Hd-s comes at a negligible price of d ln 2.

The tradeoff between L̂(h) and d(h) in (3.23) is closely related to the
structural risk minimization principle suggested by Vapnik and Chervo-
nenkis [103]. We find the Occam’s razor approach to this derivation slightly
more elegant. It also eliminates the requirement for nested Hd-s.

3.2.3 Alternative Forms of Occam’s Razor

The classical form of PAC-Bayesian bounds developed in the following sec-
tions is usually not in the explicit form of a bound on the distance be-
tween L(h) and L̂(h), as in (3.17), but rather in an implicit, but tighter
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form of a bound on Db(L̂(h)‖L(h)). For purposes of comparison between
Occam’s razor and the PAC-Bayesian bounds described later it should be
noted that the Occam’s razor bound can be written in the form of a bound
on Db(L̂(h)‖L(h)) as well. If we use the tighter KL-divergence form of (3.8)
and follow the lines of Occam’s razor proof we obtain that with a probability
greater than 1− δ

Db(L̂(h)‖L(h)) <
− lnP(h)− ln δ

N
(3.24)

for all h ∈ H simultaneously. Furthermore, by the lower bound (3.6) on the
KL-divergence we can recover (3.17) from (3.24).

We also point out that the requirement of the zero-one loss can be relaxed
and the only requirement on L(h) is to be bounded. The simplest way to
obtain this relaxation is to use Hoeffding’s inequality (3.3) instead of the
Chernoff-Hoeffding bound in the proof of (3.17). By the convexity of the
KL-divergence it is also possible to prove that if L(h) is bounded within [0, 1]
interval the KL-form of the Occam’s razor bound (3.24) still holds [66]. And,
of course, any bounded loss can be normalized to the [0, 1] interval.

3.2.4 Occam’s Razor and the MDL Principle

This point is convenient to draw a relation between Occam’s razor and the
MDL principle. The MDL learning principle selects a hypothesis which has
the minimal description length. The description length constitutes of the
length of the hypothesis description plus the description of the data given
the hypothesis. If we define a prior P(h) over H it is well known from
the information theory that the number of bits required to describe h is
− lnP(h) [27]. The number of bits required to describe the data (the labels
in this case) given h is NL̂(h). Thus, MDL selects h ∈ H which optimizes
the tradeoff L̂(h) − 1

N lnP(h). We note that the importance of − lnP(h)
decreases as 1

N .
To compare the MDL principle with Occam’s razor we bound the KL-

divergence from below. For q > p we have that Db(p‖q) ≥ (q−p)2
2q . This

inequality implies that if Db(p‖q) < x then q ≤ p+
√

2px+2x. By combining
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this with (3.24) we obtain:

L(h) < L̂(h) +

√
2L̂(h)(− lnP(h)− ln δ)

N
+

2(− lnP(h)− ln δ)
N

. (3.25)

Thus, when L̂(h) is small the Occam’s razor criterion is similar to the MDL
criterion and the importance of − lnP(h) decreases as 1

N . However, if L̂(h)
is large the importance of the prior decreases as 1√

N
. This result comes in

line with other results on parameter estimation in statistics: when the noise
level is low and the data generation process belongs to the hypothesis class,
the speed of convergence of parameter estimations to their true values goes
as 1

N . However, if the noise level is high or the generation process does not
belong to the hypothesis class, the speed of convergence goes as 1√

N
. Hence,

in the latter case MDL is overfitting.

3.2.5 Randomized Predictors

Our further goal is to extend the technique of covering hypothesis spaces for
general uncountable hypothesis spaces. This requires several modifications
to Occam’s razor one of which is to consider randomized predictors, which
we define in this section. Let Q(h) be a distribution over a hypothesis space
H (either countable or uncountable). A randomized predictor associated
with Q, and with a small abuse of notation denoted by Q, is defined in the
following way. For each sample x a hypothesis h ∈ H is drawn according to
Q(h) and then used to make the prediction on x.

Note that in other works on PAC-Bayesian bounds Q is usually termed
a randomized classifier [59]. In that context, h(x) returns a label y of x as
predicted by h. However, since this work extends the PAC-Bayesian frame-
work beyond the classification scenario by using the same randomization
technique we chose the term of randomized predictor. In this more general
context h(x) is a general function of x.

We further extend the definitions of the empirical and expected losses
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for randomized predictors in the following way:

L(Q) = EQ(h)L(h) (3.26)

and
L̂(Q) = EQ(h)L̂(h). (3.27)

3.2.6 Occam’s Razor for Randomized Predictors

In cases where the hypothesis space H is countable it is possible to apply
Occam’s razor to derive generalization bounds for randomized predictors.
Since (3.24) holds for all h ∈ H simultaneously, for any distribution Q over
H we have:

Db(L̂(Q)‖L(Q)) <
−EQ(h) lnP(h)− ln δ

N
. (3.28)

Proof.

Db(L̂(Q)‖L(Q)) = Db(EQ(h)L̂(h)‖EQ(h)L(h))

≤ EQ(h)Db(L̂(h)‖L(h)) (3.29)

<
−EQ(h) lnP(h)− ln δ

N
, (3.30)

where (3.29) is by the convexity of the KL-divergence [27] and (3.30) is by
the expectation EQ(h) of (3.24).

3.3 PAC-Bayesian Generalization Bounds

PAC-Bayesian generalization bounds were suggested by McAllester [67, 68]
as a tool to cover uncountably infinite hypothesis spaces. This comes at a
price that the bounds hold for randomized classifiers, as defined in section
3.2.5, but cannot be directly applied to individual hypotheses, although
there are some workarounds. Multiple successive works have suggested some
improvements to the bound [7, 18, 66, 72] as well as some simplifications to
its proof [76, 59, 66, 8]. In this work we chose to present the bound in the
form suggested by Maurer [66], which is slightly tighter and simpler than



44 Chapter 3: PAC-Bayesian Generalization Bounds

the original bound in [68]. In section 3.3.5 we mention some of the more
sophisticated forms of the bound suggested in [7, 18, 72].

Theorem 3.5 (PAC-Bayesian bound for classification). For a hypothesis
set H, a prior distribution P over H and a loss function L bounded by 1,
with a probability greater than 1− δ over drawing a sample of size N , for all
randomized classifiers Q simultaneously :

Db(L̂(Q)‖L(Q)) ≤
D(Q‖P) + 1

2 ln(4N)− ln δ
N

. (3.31)

One of the most extensively studied applications of the PAC-Bayesian
bound is the analysis of SVMs [68, 59, 4, 52, 72]. When a Gaussian prior
over the linear separators is selected, the bounds provide a theoretical justi-
fication for the maximum margin principle in learning SVMs. They are also
the tightest known bounds for SVMs. Derbeko et. al. [30] applied PAC-
Bayesian bounds to analysis of transduction learning In [82] we suggested
applying the PAC-Bayesian bound for the analysis of co-clustering which
is presented in Chapter 4. Other applications include maximum margin
analysis of structured classification [11]. A positive property that distin-
guishes PAC-Bayesian bounds is their explicit form of dependence on model
parameters, which makes them easy to apply in optimization.

In [83] we suggested an extension of the PAC-Bayesian analysis technique
and used it to derive a PAC-Bayesian bound for density estimation. Here
we present a slightly better formulation of it.

Theorem 3.6. Let X be the sample space and let p(X) be an unknown and
unrestricted distribution over X ∈ X . Let H be a hypothesis class, such
that each member h of H is a function h : X 7→ Z, where Z = {1, .., |Z|}.
Let ph(Z) = P

X∼p(X)
{h(X) = Z} be the distribution over Z induced by

p(X) and h. Let P be a prior distribution over H. Let Q be an arbitrary
distribution over H and pQ(Z) = EQ(h)

ph(Z) a distribution over Z induced
by p(X) and Q. Let S be an i.i.d. sample of size N generated according
to p(X) and let p̂(X) be the empirical distribution over X corresponding to
S. Let p̂h(Z) = P

X∼p̂(X)
{h(X) = Z} be the empirical distribution over Z
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corresponding to h and S and p̂Q(Z) = EQ(h)
p̂h(Z). Then with a probability

greater than 1− δ for all possible Q simultaneously :

D(p̂Q(Z)‖pQ(Z)) ≤ D(Q‖P) + (|Z| − 1) ln(N + 1)− ln δ
N

. (3.32)

We have further demonstrated that the PAC-Bayesian bound for classi-
fication (3.31) is a special case of the PAC-Bayesian bound for density esti-
mation, when we consider Z as the error variable. The proof of theorem 3.6
is surprisingly simple and reveals a close relation between the PAC-Bayesian
theorems and the method of types in information theory [27]. Further rela-
tions between the PAC-Bayesian bounds, information theory and statistical
mechanics are discussed in [21].

The proof of theorem 3.6 is based on three simple steps. First we bound
the expectation of the exponent of the divergence, EeND(p̂h(X)‖ph(X)) for a
single hypothesis h. Then we bound the same exponent of the divergence,
when h is selected at random according to P(h) and apply Markov’s inequal-
ity to bound the probability that EP(h)

eND(p̂h(Z)‖ph(Z)) diverges significantly
from its expectation. Finally, we apply a change of measure inequality to
infer (3.32) for all Q. The details of the proof are presented in the following
sections. Some further discussion is presented afterwards.

3.3.1 The Law of Large Numbers

We first analyze the rate of convergence of empirical distributions over finite
domains around their true values. The following result is based on the
method of types in information theory [27].

Theorem 3.7. Let S = {X1, .., XN} be i.i.d. distributed by p(X) and let
|X| be the cardinality of X. Denote by p̂(X) the empirical distribution of S.
Then:

ESe
ND(p̂(X)‖p(X)) ≤ (N + 1)|X|−1. (3.33)

Proof. Enumerate the possible values of X by 1, .., |X| and let ni count the
number of occurrences of value i. Let pi denote the probability of value i
and p̂i = ni

N be its empirical counterpart. Let H(p̂) = −
∑

i p̂i ln p̂i be the
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empirical entropy. Then:

ESe
ND(p̂(X)‖p(X)) =

∑
n1,..,n|X|:∑

i ni=N

(
N

n1, .., n|X|

)
·
|X|∏
i=1

pNp̂i
i · eND(p̂(X)‖p(X))

≤
∑

n1,..,n|X|:∑
i ni=N

eNH(p̂) · eN
∑

i p̂i ln pi · eND(p̂(X)‖p(X)) (3.34)

=
∑

n1,..,n|X|:∑
i ni=N

1 =
(
N + |X| − 1
|X| − 1

)
≤ (N + 1)|X|−1. (3.35)

In (3.34) we use the
(

N
n1,..,n|X|

)
≤ eNH(p̂) bound on the multinomial coeffi-

cient, which counts the number of sequences with a fixed cardinality profile
(type) n1, .., n|X| [27]. In the second equality in (3.35) the number of ways
to choose ni-s equals the number of ways we can place |X| − 1 ones in a
sequence of N + |X| − 1 ones and zeros, where ones symbolize a partition of
zeros (“balls”) into |X| bins.

Some Corollaries of Theorem 3.7

Note in passing that it is straightforward to recover theorem 12.2.1 in [27]
from theorem 3.7. We even suggest a small improvement over it:

Theorem 3.8 (12.2.1 in Cover and Thomas, 1991). Under the notations of
theorem 3.7:

P {D(p̂(X)‖p(X)) ≥ ε} ≤ e−Nε+(|X|−1) ln(N+1), (3.36)

or, equivalently, with a probability greater than 1− δ:

D(p̂(X)‖p(X)) ≤ (|X| − 1) ln(N + 1)− ln δ
N

. (3.37)
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Proof. By Markov’s inequality and theorem 3.7:

P{D(p̂(X)‖p(X)) ≥ ε} = P{eND(p̂(X)‖p(X)) ≥ eNε}

≤ EeND(p̂(X)‖p(X))

eNε

≤ (N + 1)|X|−1

eNε
= e−Nε+(|X|−1) ln(N+1).

3.3.2 Change of Measure Inequality

Simultaneous treatment of all possible distributions (measures) Q over H is
done by relating them all to a single reference (prior) measure P. We call
this relation a change of measure inequality. It appears in the proof of the
PAC-Bayesian theorem in [69] and was formulated as a standalone result in
[8]. Banerjee [8] terms it a compression lemma, however we find the name
“change of measure inequality” more appropriate to its nature and usage.
The inequality is a simple consequence of Jensen’s inequality.

Lemma 3.1 (Change of Measure Inequality). For any measurable function
φ(h) on H and any distributions P and Q on H, we have:

EQ(h)φ(h) ≤ D(Q‖P) + ln EP(h)e
φ(h). (3.38)

Proof. For any measurable function φ(h), we have:

EQ(h)φ(h) = EQ(h) ln
(
dQ(h)
dP(h)

· eφ(h) · dP(h)
dQ(h)

)
= D(Q‖P) + EQ(h) ln

(
eφ(h) · dP(h)

dQ(h)

)
≤ D(Q‖P) + ln EQ(h)

(
eφ(h) · dP(h)

dQ(h)

)
(3.39)

= D(Q‖P) + ln EP(h)e
φ(h),

(3.40)
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where (3.39) is by Jensen’s inequality.

3.3.3 Proof of the PAC-Bayesian Generalization Bound for

Density Estimation

We apply the results of the previous two sections to prove the PAC-Bayesian
generalization bound for density estimation in theorem 3.6.

Proof (Theorem 3.6). Let S = {X1, .., XN} be an i.i.d. sample according
to p(X) and let {Zh1 , .., ZhN} = {h(X1), .., h(XN )}. Then Zhi are i.i.d. dis-
tributed according to ph(Z) and we denote their empirical distribution by
p̂h(Z). Let φ(h, S, p) = ND(p̂h(Z)‖ph(Z)). Then:

ND(p̂Q(Z)‖pQ(Z)) = ND(EQ(h)p̂h(Z)‖EQ(h)ph(Z))

≤ EQ(h)ND(p̂h(Z)‖ph(Z)) (3.41)

≤ D(Q‖P) + ln EP(h)e
ND(p̂h(Z)‖ph(Z)), (3.42)

where (3.41) is by the convexity of the KL-divergence [27] and (3.42) is
by the change of measure inequality. To obtain (3.32) it is left to bound
EP(h)e

ND(p̂h(Z)‖ph(Z)):

ES
[
EP(h)e

ND(p̂h(Z)‖ph(Z))
]

= EP(h)

[
ESeND(p̂h(Z)‖ph(Z))

]
≤ (N + 1)|Z|−1,

(3.43)
where the last inequality is justified by the fact that ESeND(p̂h(Z)‖ph(Z)) ≤
(N + 1)|Z|−1 for each h individually according to (3.33). By (3.43) and
Markov’s inequality we conclude that with a probability of at least 1 − δ
over S:

EP(h)e
ND(p̂h(Z)‖ph(Z)) ≤ (N + 1)|Z|−1

δ
. (3.44)

Substituting this into (3.42) and normalizing by N provides (3.32).

3.3.4 Proof of the PAC-Bayesian Bound for Classification

To recover the PAC-Bayesian theorem 3.5 from theorem 3.6 in the case of
zero-one loss let Z be the zero-one error variable. In this case h maps a
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sample 〈x, y〉 to Z = Ih(x)=y. Then L(h) = EZ = ph{Z = 1} and L(Q) =
pQ{Z = 1}. As well, |Z| = 2. Substituting this into (3.32) we obtain
(3.31) up to a factor of 1

2 lnN . By the convexity of D(L̂(Q)‖L(Q)) it is
possible to show that the result holds for any loss bounded by 1 [66]. The
improvement of 1

2 lnN in theorem 3.5 is achieved by showing that in the
case where L(h) = EZ the expectation EeND(L̂(h)‖L(h)) ≤ 2

√
N instead of

the more general bound EeND(p̂(Z)‖p(Z)) ≤ (N + 1)|Z|−1 for distributions we
have in theorem 3.7.

3.3.5 Remarks

Finite hypothesis sets both (3.28) and (3.31) hold. By writing D(Q‖P) =
−H(Q) − EQ(h) lnP(h) we find that (3.31) is tighter than (3.28) when
H(Q) > 1

2 ln(4N). However, as N increases H(Q) is likely to decrease
and in the limit of large N (3.28) is tighter. Some authors suggest slightly
different forms of the PAC-Bayesian bound, where the 1

2 ln(4N) term is ei-
ther reduced or completely eliminated at the cost of increasing the D(Q‖P)
coefficient [7, 18]. In [21, 72] instead of bounding Db(L̂(Q)‖L(Q)) bounding
of functions of the form F(L(Q))− CL̂(Q) for constant C and convex F is
considered, which can also provide slightly tighter results if optimized with
respect to C.

The tradeoff between L̂(Q) and D(Q‖P) in the PAC-Bayesian bounds
has a tight relation to the maximum entropy principle in learning and sta-
tistical mechanics [48, 34, 21, 89]. This point is further discussed in [21, 89].

3.3.6 Smoothing

In some applications, and in particular in the co-clustering analysis we dis-
cuss in the next chapter, it may be of interest to find an estimate q(Z) of
pQ(Z). It is also natural to evaluate q(Z) by its logarithmic loss−EpQ(Z) ln q(Z).
The latter corresponds to the expected code length of encoder q when sam-
ples are generated by pQ [27]. Although we bounded D(p̂Q(Z)‖pQ(Z)) in
theorem 3.6, p̂Q(Z) cannot be used as an estimator for pQ(Z) since it is not
bounded from zero. To cope with this, we define a smoothed version of p̂
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we call q:

qh(Z) =
p̂h(Z) + γ

1 + γ|Z|
, (3.45)

qQ(Z) = EQ(h)
qh(Z) =

p̂Q(Z) + γ

1 + γ|Z|
. (3.46)

In the following theorem we show that if D(p̂Q(Z)‖pQ(Z)) ≤ ε(Q) and

γ =
√
ε(Q)/2

|Z| , then −EpQ(Z) ln qQ(Z) is roughly within ±
√
ε(Q)/2 ln |Z|

range around H(p̂Q(Z)). The bound on D(p̂Q(Z)‖pQ(Z)) is naturally ob-
tained by theorem 3.6. Thus, the performance of the density estimator qQ is
optimized by distribution Q that minimizes the tradeoff between H(p̂Q(Z))
and 1

ND(Q‖P).

Note that for a uniform distribution u(Z) = 1
|Z| the value of−Ep(Z) lnu(Z) =

ln |Z|. Thus, the theorem is interesting when
√
ε(Q)/2 is significantly

smaller than 1. For technical reasons we encounter in the proofs of the next
chapter, the upper bound in the following theorem is stated for−EpQ(Z) ln qQ(Z)
and for −EQ(h)Eph(Z) ln qh(Z). We also denote ε = ε(Q) for brevity.

Theorem 3.9. Let Z be a random variable distributed according to pQ(Z)
and assume that D(p̂Q(Z)‖pQ(Z)) ≤ ε. Then −EpQ(Z) ln qQ(Z) is mini-

mized by γ =
√
ε/2

|Z| . For this value of γ the following inequalities hold:

−EQ(h)Eph(Z) ln qh(Z) ≤ H(p̂Q(Z)) +
√
ε/2 ln |Z|+ φ(ε), (3.47)

−EpQ(Z) ln qQ(Z) ≤ H(p̂Q(Z)) +
√
ε/2 ln |Z|+ φ(ε), (3.48)

−EpQ(Z) ln qQ(Z) ≥ H(p̂Q(Z))−
√
ε/2 ln |Z| − ψ(ε), (3.49)

where:

ψ(ε) =
√
ε

2
ln

1 +
√

ε
2√

ε
2

and φ(ε) = ψ(ε) + ln(1 +
√
ε

2
).

Note that both φ(ε) and ψ(ε) go to zero approximately as−
√
ε/2 ln

√
ε/2.
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Proof. Recall that by the KL-divergence bound on the L1 norm [27]:

‖p̂Q(Z)− pQ(Z)‖1 ≤
√

2D(p̂Q(Z)‖pQ(Z)) ≤
√

2ε. (3.50)

For the proof of (3.47):

−EQ(h)Eph(Z) ln qh(Z) = EQ(h)E[p̂h(Z)−ph(Z)] ln qh(Z)− EQ(h)Ep̂h(Z) ln qh(Z)

= EQ(h)E[p̂h(Z)−ph(Z)] ln
p̂h(Z) + γ

1 + γ|Z|
− EQ(h)Ep̂h(Z) ln

p̂h(Z) + γ

1 + γ|Z|

≤ −1
2
‖p̂Q(Z)− pQ(Z)‖1 ln

γ

1 + γ|Z|
+ EQ(h)H(p̂h(Z)) + ln(1 + γ|Z|)

≤ H(p̂Q(Z))−
√
ε/2 ln

γ

1 + γ|Z|
+ ln(1 + γ|Z|), (3.51)

where (3.51) is justified by the concavity of the entropy function H and

(3.50). By differentiation (3.51) is minimized by γ =
√
ε/2

|Z| . By substitution
of this value of γ into (3.51) we obtain (3.47). Inequality (3.48) is justified
by (3.47) and the concavity of the ln function. Finally, we prove the lower
bound (3.49):

−EpQ(Z) ln qQ(Z) = E[p̂Q(Z)−pQ(Z)] ln qQ(Z)− Ep̂Q(Z) ln qQ(Z)

≥ −1
2
‖p̂Q(Z)− pQ(Z)‖1 ln

1 + γ|Z|
γ

+H(p̂Q(Z))

≥ H(p̂Q(Z))−
√
ε/2 ln

|Z|(1 +
√
ε/2)√

ε/2
.
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Chapter 4

PAC-Bayesian Analysis of

Co-clustering

In sections 2.2.3, 2.2.4, and 2.2.5 we presented the co-clustering approach to
discriminative prediction and density estimation. Here we apply the PAC-
Bayesian generalization bounds developed in the previous chapter to ana-
lyze the co-clustering approach. We begin with the co-clustering approach
to discriminative prediction, which is slightly easier in terms of presenta-
tion. Below it is presented in a more general and formal way than in the
preliminary definition in Chapter 2.

4.1 PAC-Bayesian Analysis of Discriminative Pre-

diction with Grid Clustering

Let X1 × .. × Xd × Y be a (d + 1)-dimensional product space. We assume
that each Xi is categorical and its cardinality is fixed and known and we
denote it by |Xi| = ni. We also assume that Y is finite with cardinality
|Y | and that a bounded loss function l(Y, Y ′) for predicting Y ′ instead of
Y is given. As an example consider collaborative filtering. In collaborative
filtering d = 2, X1 is the space of viewers, n1 is the number of viewers, X2 is
the space of movies, n2 is the number of movies, and Y is the space of the

53
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X1 X2

C1 C2

Y

(a) Graphical Model for
Discriminative Prediction

X1 X2

C1 C2

(b) Graphical Model for
Density Estimation

Figure 4.1: Illustration of graphical models corresponding to dis-
criminative prediction (4.1) and density estimation (4.15) models.
The illustrations are for the case of d = 2.

ratings (e.g., on a five-star scale). l(Y, Y ′) can be, for example, an absolute
loss l(Y, Y ′) = |Y − Y ′| or a quadratic loss l(Y, Y ′) = (Y − Y ′)2. There is
no natural metric on the space of viewers and on the space of movies; thus
both X1 and X2 are categorical.

We assume there exists an unknown probability distribution p(X1, .., Xd, Y )
over the product space. We further assume that we are given an i.i.d. sam-
ple of size N generated according to p(X1, .., Xd, Y ). We use p̂(X1, .., Xd, Y )
to denote the empirical frequencies of (d + 1)-tuples 〈X1, .., Xd, Y 〉 in the
sample. We consider the following form of discriminative predictors (which
is a more general form of (2.3)):

q(Y |X1, .., Xd) =
∑

C1,..,Cd

q(Y |C1, .., Cd)
d∏
i=1

q(Ci|Xi). (4.1)

The hidden variables C1, .., Cd represent a clustering of the observed vari-
ables X1, .., Xd. The hidden variable Ci accepts values in {1, ..,mi}, where
mi = |Ci| denotes the number of clusters used along dimension i. The con-
ditional probability distribution q(Ci|Xi) represents the probability of map-
ping (assigning) Xi to cluster Ci. The conditional probability q(Y |C1, .., Cd)
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represents the probability of assigning label Y to cell 〈C1, .., Cd〉 in the clus-
ter product space. The prediction model (4.1) corresponds to the graphical
model in Figure 4.1.a. The free parameters of the model are the conditional
distributions {q(Ci|Xi)}di=1 and q(Y |C1, .., Cd). We denote these collectively
by Q =

{
{q(Ci|Xi)}di=1, q(Y |C1, .., Cd)

}
. In the next section we show that

(4.1) corresponds to a randomized prediction strategy. We further denote:

L(Q) = Ep(X1,..,Xd,Y )Eq(Y |X1,..,Xd)l(Y, Y
′) (4.2)

and
L̂(Q) = Ep̂(X1,..,Xd,Y )Eq(Y |X1,..,Xd)l(Y, Y

′), (4.3)

where q(Y |X1, .., Xd) is defined by (4.1).

We define
Ĩ(Xi;Ci) =

1
ni

∑
xi,ci

q(ci|xi) ln
q(ci|xi)
q̃(ci)

, (4.4)

where xi ∈ Xi are the possible values of Xi, ci are the possible values of Ci,
and

q̃(ci) =
1
ni

∑
xi

q(ci|xi). (4.5)

q̃(ci) is the marginal distribution over Ci corresponding to q(Ci|Xi) and
a uniform distribution qu(xi) = 1

ni
over Xi and Ĩ(Xi;Ci) is the mutual

information corresponding to the joint distribution q(xi, ci) = 1
ni
q(ci|xi)

defined by q(ci|xi) and the uniform distribution over Xi.

With the above definitions we can state the following theorem.

Theorem 4.1. For any probability measure p(X1, .., Xd, Y ) over X1 × .. ×
Xd × Y and for any loss function l bounded by 1, with a probability of at
least 1 − δ over a selection of an i.i.d. sample S of size N according to p,
for all randomized classifiers Q =

{
{q(Ci|Xi)}di=1, q(Y |C1, .., Cd)

}
:

Db(L̂(Q)‖L(Q)) <

∑d
i=1

(
niĨ(Xi;Ci) +mi lnni

)
+
(∏d

i=1mi

)
ln |Y |+K

N
,

(4.6)
where K = 1

2 ln(4N)− ln δ.
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Remarks:

• Any bounded loss greater than 1 can be normalized to the [0,1] interval.

• All other forms of PAC-Bayesian bounds mentioned in section 3.3.5, as
well as Occam’s razor for randomized predictors (3.28) can be applied.
In the case of Occam’s razor, Ĩ(Xi;Ci) in (4.6) is replaced by the en-
tropy H(q̃(ci)) of q̃(ci) as defined in (4.5) and the 1

2 ln(4N) factor is
eliminated. In fact, in most situations Occam’s razor suggests a tighter
bound for this problem, but the PAC-Bayesian form is handier if op-
timization is required, because Ĩ(Xi;Ci) has a convenient derivative
with respect to q(Ci|Xi).

• For purposes of the discussion below it is easier to look at the weaker,
but explicit form of the bound (4.6), which follows from it by the
L1-norm lower bound on the KL-divergence (3.6):

L(Q) < L̂(Q) +

√√√√∑i

(
niĨ(Xi;Ci) +mi lnni

)
+ (
∏
imi) ln |Y |+K

2N
,

(4.7)
where K = 1

2 ln(4N)− ln δ.

Discussion: There are two extreme solutions to collaborative filtering
task that provide a good intuition on the co-clustering approach to this
problem. If we assign all the data to a single large cluster we can evaluate
the empirical mean/median/most frequent rating of that cluster fairly well.
In this situation the empirical loss L̂(Q) is expected to be large, because we
approximate all the entries with the global average, but its distance to the
true loss L(Q) is expected to be small. If we take the other extreme and
assign each row and each column to a separate cluster, L̂(Q) can be zero,
because we can approximate every entry with its own value, but its distance
to the true loss L(Q) is expected to be large, because each cluster has too
little data to make a statistically reliable estimation. Thus, the goal is to
optimize the tradeoff between locality of the predictions and their statistical
reliability.
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(a) Unbalanced Partition (b) Balanced Partition

Figure 4.2: Illustration of an unbalanced (a) and a balanced (b)
partitions of a 4×4 matrix into 2×2 clusters. Note that there are
4 possible ways to group 4 objects into 2 unbalanced clusters and

(
4
2

)
= 6

possible ways to group 4 objects into 2 balanced clusters. Thus, the subspace
of unbalanced partitions is smaller than the space of balanced partitions and
unbalanced partitions are simpler (it is easier to describe an unbalanced
partition rather than a balanced one).

One nice observation is that this tradeoff is explicitly exhibited in the
bound in (4.7). If we assign all Xi-es to a single cluster, then Ĩ(Xi;Ci) = 0
and we obtain that L̂(Q) is close to L(Q). And if we assign each Xi to a sepa-
rate cluster, then Ĩ(Xi;Ci) is large, specifically in this case Ĩ(Xi;Ci) = lnni,
and L̂(Q) is far from L(Q). But there are even finer observations we can
draw from this bound. Bear in mind that niĨ(Xi;Ci) is linear in ni, whereas
mi lnni is logarithmic in ni. Thus, at least when mi is small compared to
ni (which is a reasonable assumption when we cluster the values of Xi) the
leading term in (4.7) is niĨ(Xi;Ci). This term penalizes the effective com-
plexity of the partition, rather than simply the number of clusters used in a
solution. For example, the unbalanced partition of a 4× 4 matrix into 2× 2
clusters in Figure 4.2.a is simpler than the balanced partition into the same
number of clusters in Figure 4.2.b. The reason, which will become clearer
after we define the prior over the space of partitions in section 4.3, is that
there are fewer unbalanced partitions than balanced ones. Slightly more
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intuitively, the partition in Figure 4.2.a is closer to a partition where we put
everything into one large cluster and does not fully utilize the 2× 2 clusters
it could use, and therefore should be penalized less. On a practical level,
the bound enables at the optimization step to operate with more clusters
than are actually required and to penalize the final solution according to
the measure of utilization of the clusters. Thus, the bound (4.7) suggests a
tradeoff between the empirical performance and the effective complexity of
a partition.

Finally consider the (
∏d
i=1mi) ln |Y | term in the bound. (

∏d
i=1mi) is the

number of partition cells (in a hard partition) and it corresponds to the size
of the 〈C1, .., Cd, Y 〉 clique in Figure 4.1.a. The number N of sample points
should be comparable to the number of partition cells, so it is natural that
this term appears in the bound. This term grows exponentially with the
number of dimensions d, thus we can apply the bound for low-dimensional
problems like collaborative filtering, but when the number of dimensions
grows a different approach is required. We suggest one possible approach to
handling high dimensions in Chapter 5.

Proof of Theorem 4.1. The proof of theorem 4.1 is a direct application of
the PAC-Bayesian bound for classification in theorem 3.5. In order to apply
the theorem we need to define a hypothesis space H, a prior over hypothesis
space P, a posterior over hypothesis space Q, and to calculate the KL-
divergence D(Q‖P). We define the hypothesis space in the next section and
design a prior over it in section 4.3. Then, substitution of the calculation of
D(Q‖P) in lemma 4.2 into theorem 3.5 completes the proof.

4.2 Grid Clustering Hypothesis Space

The hypothesis space H we chose to work with is the space of hard grid
partitions of the product space X1 × .. × Xd (as illustrated in Figure 4.2)
augmented with label assignments to the partition cells. (In section 4.4
we will use grid partitions without labels on the partition cells, thus the
discussion in these two sections will deliberately be general enough to hold
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in both cases.) In a hard grid partition each value xi ∈ Xi is mapped to a
single cluster ci ∈ {1, ..,mi}. To work withH we use the following notations:

• We let m̄ = (m1, ..,md) to be the vector counting the number of clus-
ters along each dimension.

• We use H|i to denote the space of partitions of Xi. In other words,
H|i is a projection of H onto dimension i.

• We letHm̄ denote the subspace of partitions of X1×..×Xd in which the
number of clusters used along each dimension matches m̄. Obviously,
Hm̄-s are disjoint.

• We use H|y|m̄ to denote the space of possible assignments of labels to
Hm̄. Note that since the number of partition cells is equal for each
member of Hm̄ there is one-to-one correspondence between Hm̄-s and
H|y|m̄-s. Thus, we can write H =

⋃
m̄

(
Hm̄ ×H|y|m̄

)
.

• For each h ∈ H we write h = h|1 × ..× h|d × h|y|m̄, where h|i denotes
the partition induced by h along dimension i and h|y|m̄ denotes the
assignment of labels to partition cells of h. Later, when we discuss
density estimation with grid clustering, h is just h = h|1 × .. × h|d,
without the labels assignment.

It should be pointed out that Q =
{
{q(Ci|Xi)}di=1, q(Y |C1, .., Cd)

}
is a

distribution over H and (4.1) corresponds to a randomized prediction strat-
egy. More precisely, Q is a distribution over Hm̄ ×H|y|m̄, where m̄ matches
the cardinalities of Ci-s in the definitions of

{
{q(Ci|Xi)}di=1, q(Y |C1, .., Cd)

}
.

In order to draw a hypothesis h ∈ H according to Q we draw a cluster ci
for each xi ∈ Xi according to q(Ci|Xi) and then draw a label for each parti-
tion cell according to q(Y |C1, .., Cd). For example, we map each viewer to a
cluster of movies, map each movie to a cluster of movies and assign ratings
to the product space of viewer clusters by movie clusters. Then, in order
to assign a label to a sample 〈x1, .., xd〉 we just check which partition cell it
felt in and return the corresponding label. Recall that in order to assign a
label to another sample point we have to draw a new hypothesis from H.



60 Chapter 4: PAC-Bayesian Analysis of Co-clustering

Note that in (4.1) we actually skip the step of assigning a cluster for each
xi ∈ Xi and assigning a label for each partition cell (actually, the whole step
of drawing a hypothesis) and assign a label to the given point 〈X1, .., Xd〉
directly. Nevertheless, (4.1) corresponds to the randomized prediction pro-
cess described above. This makes it possible to apply the PAC-Bayesian
analysis.

4.3 Combinatorial Priors in PAC-Bayesian Bounds

In this section we design a combinatorial prior over the grid clustering hy-
pothesis space and calculate the KL-divergence D(Q‖P) between the pos-
terior defined earlier and the prior. An interesting point about the obtained
result is that combinatorial priors result in mutual information terms in cal-
culations of the KL-divergence. This can be compared with the L2-norm
and L1-norm terms resulting from Gaussian and Laplacian priors respec-
tively in the analysis of SVMs [69]. Another interesting point to mention
is that the posterior Q returns a named partition of Xi-s. However, the
hypothesis space H and the prior P defined below operate with unnamed
partitions: they only depend on the structure of a partition, but not on the
exact names assigned to the clusters. This way we account for all possible
name permutations, which are irrelevant for the solution.

The statements in the next two lemmas are given in two versions, one
for the extended H with labels, which is used in the proofs of theorem 4.1,
and the other one for the restricted version of H without the labels, which
is used later for the proofs on density estimation with grid clustering.

Lemma 4.1. It is possible to define a prior P over Hm̄ that satisfies:

P(h) ≥ 1

exp
[∑d

i=1

(
niH(qh|i) + (mi − 1) lnni

)] , (4.8)

where qh|i denotes the cardinality profile of cluster sizes along dimension i

of a partition corresponding to h. It is further possible to define a prior P
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over H =
⋃
m̄

(
Hm̄ ×H|y|m̄

)
that satisfies:

P(h) ≥ 1

exp
[∑d

i=1

(
niH(qh|i) +mi lnni

)
+
(∏d

i=1mi

)
ln |Y |

] , (4.9)

Lemma 4.2. For the prior defined in (4.8) and the posterior Q = {q(Ci|Xi)}di=1:

D(Q‖P) ≤
d∑
i=1

(
niĨ(Xi;Ci) + (mi − 1) lnni

)
. (4.10)

And for the prior defined in (4.9) and the posterior Q =
{
{q(Ci|Xi)}di=1, q(Y |C1, .., Cd)

}
:

D(Q‖P) ≤
d∑
i=1

(
niĨ(Xi;Ci) +mi lnni

)
+

(
d∏
i=1

mi

)
ln |Y |. (4.11)

4.3.1 Proofs

Proof of Lemma 4.1. To define the prior P overHm̄ we count the hypotheses
inHm̄. There are

(
ni−1
mi−1

)
≤ nmi−1

i possibilities to choose a cluster cardinality
profile along a dimension i. (Each of the mi clusters has a size of at least one.
To define a cardinality profile we are free to distribute the “excess mass” of
ni−mi among the mi clusters. The number of possible distributions equals
the number of possibilities to place mi− 1 ones in a sequence of (ni−mi) +
(mi − 1) = ni − 1 ones and zeros.) For a fixed cardinality profile qh|i =
{|ci1|, .., |cimi |} (over a single dimension) there are

(
ni

|ci1|,..,|cimi
|
)
≤ eniH(qh|i )

possibilities to assign Xi-s to the clusters. Putting all the combinatorial
calculations together we can define a distribution P(h) overHm̄ that satisfies
(4.8).

To prove (4.9) we further define a uniform prior over H|y|m̄. Note that
there are |Y |

∏
i mi possibilities to assign labels to the partition cells in Hm̄.

Finally, we define a uniform prior over the choice of m̄. There are ni pos-
sibilities to chose the value of mi (we can assign all xi-s to a single cluster,
assign each xi to a separate cluster, and all the possibilities in the middle).
Combining this with the combinatorial calculations done for (4.8) suggests
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(4.9)

Proof of Lemma 4.2. We first handle the case with no labels. We use the de-
composition D(Q‖P) = −EQP(h)−H(Q) and bound −EQP(h) and H(Q)
separately. We further decompose P(h) = P(h|1) · .. · P(h|d) and Q(h) in a
similar manner. Then −EQ lnP(h) = −

∑
i EQ lnP(h|i), and similarly for

D(Q‖P). Therefore, we can treat each dimension separately.

To bound −EQ lnP(h|i) recall that q̃(ci) = 1
ni

∑
xi
q(ci|xi) is the ex-

pected distribution over cardinalities of clusters along dimension i if we
draw a cluster ci for each value xi ∈ Xi according to q(Ci|Xi). Let qh|i be a
cluster cardinality profile obtained by such an assignment and corresponding
to a hypothesis h|i. Then by lemma 4.1:

− EQ lnP(h|i) ≤ (mi − 1) lnni + niEq̃(ci)H(qh|i). (4.12)

To bound Eq̃(ci)H(qh|i) we use the result on the negative bias of empirical
entropy estimates cited below. See [71] for a proof.

Theorem 4.2 (Paninski, 2003). Let X1, .., XN be i.i.d. distributed by p(X)
and let p̂(X) be their empirical distribution. Then:

EpH(p̂) = H(p)− EpD(p̂‖p) ≤ H(p). (4.13)

By (4.13) Eq̃(ci)H(qh|i) ≤ H(q̃(ci)). Substituting this into (4.12) yields:

− EQ lnP(h|i) ≤ niH(q̃(ci)) + (mi − 1) lnni. (4.14)

Now we turn to compute −H(Q) = EQ lnQ(h|i). To do so we bound
lnQ(qh|i) from above. The bound follows from the fact that if we draw ni

values of Ci according to q(Ci|Xi) the probability of the resulting type is
bounded from above by e−niH̃(Ci|Xi), where H̃(Ci|Xi) = − 1

ni

∑
xi,ci

q(ci|xi) ln q(ci|xi)
(see theorem 12.1.2 in [27]). Thus, EQ lnQ(h|i) ≤ −niH̃(Ci|Xi), which to-
gether with (4.14) and the identity Ĩ(Xi;Ci) = H(q̃(ci)) − H̃(Ci|Xi) com-
pletes the proof of (4.10).

To prove (4.11) we recall that Q is defined for a fixed m̄. Hence,
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−EQ lnP(h|y|m̄) = (
∏d
i=1mi) ln |Y | and −H(Q(h|y|m̄)) ≤ 0. Finally, by

the choice of prior P(m̄) over the selection of m̄ we have −EQ lnP(m̄) =∑d
i=1 lnni and H(Q(m̄)) = 0, which is added to (4.10) by the additivity of

D(Q‖P) completing the proof.

4.4 PAC-Bayesian Analysis of Density Estimation

with Grid Clustering

In this section we derive a generalization bound for density estimation with
grid clustering. This time we have no labels and the goal is to find a good
estimator for an unknown joint probability distribution p(X1, .., Xd) over a d-
dimensional product space X1×..×Xd based on a sample of sizeN from p. As
an illustrative example, think of estimating a joint probability distribution
of words and documents (X1 and X2) from their co-occurrence matrix. The
goodness of an estimator q for p is measured by −Ep(X1,..,Xd) ln q(X1, .., Xd).

By theorem 3.8, to obtain a meaningful bound for a direct estimation
of p(X1, .., Xd) we need N to be exponential in ni-s, since the cardinality
of the random variable 〈X1, .., Xd〉 is

∏
i ni. To reduce this dependency to

be linear in
∑

i ni we restrict the estimator q(X1, .., Xd) to be of the factor
form:

q(X1, .., Xd) =
∑

C1,..,Cd

q(C1, .., Cd)
d∏
i=1

q(Xi|Ci)

=
∑

C1,..,Cd

q(C1, .., Cd)
d∏
i=1

q(Xi)
q(Ci)

q(Ci|Xi). (4.15)

We emphasize that the above decomposition assumption is only on the es-
timator q, but not on the generating distribution p.

We choose the hypothesis space H to be the space of hard partitions of
the product space X1× ..×Xd, as previously; however this time there are no
labels to the partition cells. The general message of the following theorems
is that the empirical distribution over the coarse partitioned space converges
to the true one, and then we can use (4.15) to extrapolate it back on the
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whole space X1 × ..×Xd. Next we state this more formally.

We recall from the previous section that a distributionQ = {q(Ci|Xi)}di=1

is a distribution over Hm̄. To obtain a hypothesis h ∈ Hm̄ we draw a cluster
for each xi ∈ Xi according to q(Ci|Xi). The way we have written (4.15)
enables us to view it as a randomized prediction process: we draw a hy-
pothesis h according to Q and then predict the probability of 〈X1, .., Xd〉 as
q(Ch1 (X1), .., Chd (Xd))

∏
i

q(Xi)

q(Ch
i (Xi))

, where Chi (Xi) = h(Xi) is the partition
cell that Xi fell within in h. Although (4.15) skips the process of drawing
the complete partition h and returns the probability of 〈X1, .., Xd〉 directly,
the described randomized prediction process matches the predictions done
by (4.15) and thus enables us to apply the PAC-Bayesian bounds.

Let h ∈ H be a hard partition of X1 × .. × Xd and let h(xi) denote
the cluster that xi is mapped to in h. We define the distribution over the
partition cells 〈C1, .., Cd〉 induced by p and h:

ph(c1, .., cd) =
∑

x1,..,xd:
h(xi)=ci

p(x1, .., xd), (4.16)

ph(ci) =
∑

xi:h(xi)=ci

p(xi). (4.17)

We further define the distribution over the partition cells induced by h

and the empirical distribution p̂(X1, .., Xd) corresponding to the sample by
substitution of p̂ instead of p in the above definitions:

p̂h(c1, .., cd) =
∑

x1,..,xd:
h(xi)=ci

p̂(x1, .., xd), (4.18)

p̂h(ci) =
∑

xi:h(xi)=ci

p̂(xi). (4.19)

We also define the distribution over partition cells induced by Q and p:

pQ(c1, .., cd) =
∑
h

Q(h)ph(c1, .., cd)
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=
∑

x1,..,xd

p(x1, .., xd)
d∏
i=1

q(ci|xi), (4.20)

pQ(ci) =
∑
h

Q(h)ph(ci) =
∑
xi

p(xi)q(ci|xi). (4.21)

And its empirical counterpart:

p̂Q(c1, .., cd) =
∑
h

Q(h)p̂h(c1, .., cd)

=
∑

x1,..,xd

p̂(x1, .., xd)
d∏
i=1

q(ci|xi), (4.22)

p̂Q(ci) =
∑
h

Q(h)p̂h(ci) =
∑
xi

p̂(xi)q(ci|xi). (4.23)

We extend the definitions of ph, pQ, p̂h and p̂Q for the whole space X1×..×Xd
using (4.15). We use the notation Chi (Xi) = h(Xi) to denote the cluster
Chi (Xi) that Xi is mapped to by h.

ph(X1, .., Xd) = ph(h(X1), .., h(Xd))
d∏
i=1

p(Xi)
ph(h(Xi))

= ph(Ch1 (X1), .., Chd (Xd))
d∏
i=1

p(Xi)
ph(Chi (Xi))

, (4.24)

pQ(X1, ., Xd) =
∑

C1,.,Cd

pQ(C1, ., Cd)
d∏
i=1

p(Xi)
pQ(Ci)

q(Ci|Xi), (4.25)

p̂h(X1, .., Xd) = p̂h(h(X1), .., h(Xd))
d∏
i=1

p̂(Xi)
p̂h(h(Xi))

= p̂h(Ch1 (X1), .., Chd (Xd))
d∏
i=1

p̂(Xi)
p̂h(Chi (Xi))

, (4.26)

p̂Q(X1, ., Xd) =
∑

C1,.,Cd

p̂Q(C1, ., Cd)
d∏
i=1

p̂(Xi)
p̂Q(Ci)

q(Ci|Xi). (4.27)

Note that pQ(X1, .., Xd) is the distribution over X1 × ..×Xd, which has the
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form (4.15) and is the closest to the true distribution p(X1, .., Xd) under
the constraint that {q(Ci|Xi)}di=1 are fixed. Further, note that since we
have no access to p(X1, .., Xd) we do not know pQ(X1, .., Xd). In the next
theorem we state that the distributions p̂Q(X1, .., Xd), p̂Q(C1, .., Cd), and
p̂Q(Xi) based on the sample converge to their counterparts corresponding
to the true distribution p(X1, .., Xd).

Theorem 4.3. For any probability measure p over X1× ..×Xd and an i.i.d.
sample S of size N according to p, with a probability of at least 1− δ for all
grid clusterings Q = {q(Ci|Xi)}di=1 the following holds simultaneously :

D(p̂Q(C1, ., Cd)‖pQ(C1, ., Cd)) ≤
∑d

i=1 niĨ(Xi;Ci) +K1

N
(4.28)

and

D(p̂(Xi)‖p(Xi)) ≤
(ni − 1) ln(N + 1) + ln d+1

δ

N
, (4.29)

where

K1 =
d∑
i=1

mi lnni + (M − 1) ln(N + 1) + ln
d+ 1
δ

(4.30)

and

M =
d∏
i=1

mi (4.31)

is the number of partition cells in Q.

As well, with a probability greater than 1− δ:

D(p̂Q(X1, ., Xd)‖pQ(X1, ., Xd)) ≤
∑d

i=1 niĨ(Xi;Ci) +K2

N
, (4.32)

where

K2 =
∑
i

mi lnni +

[
M +

∑
i

ni − d− 1

]
ln(N + 1)− ln δ. (4.33)

Before we prove and discuss the theorem we point out that although
p̂Q(X1, ., Xd) converges to pQ(X1, ., Xd) it still cannot be used to minimize
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−Ep(X1,..,Xd) ln p̂Q(X1, .., Xd), because it is not bounded from zero. Similarly
we cannot use the smoothing theorem 3.9 to smooth p̂Q(X1, .., Xd) directly,
because the cardinality of the random variable 〈X1, .., Xd〉 is

∏
i ni and this

term will enter into the bounds. To get around this we utilize the factor
form of ph and the bounds (4.28) and (4.29). We define an estimator qQ,
which is a smoothed version of p̂Q in the following way:

qh(C1, .., Cd) =
p̂h(C1, .., Cd) + γ

1 + γM
, (4.34)

q(Xi) =
p̂(Xi) + γi
1 + γini

, (4.35)

qh(ci) =
∑

xi:h(xi)=ci

q(xi), (4.36)

qh(X1, .., Xd) = qh(Ch1 (X1), .., Chd (Xd))
d∏
i=1

qh(Xi)
qh(Chi (Xi))

. (4.37)

And for a distribution Q over H:

qQ(C1, .., Cd) =
p̂Q(C1, .., Cd) + γ

1 + γM
, (4.38)

qQ(Ci) =
∑
xi

q(xi)q(Ci|xi) =
p̂Q(Ci) + γiq̃(Ci)ni

1 + γini
, (4.39)

qQ(X1, .., Xd) =
∑
h

Q(h)qh(X1, .., Xd)

=
∑

C1,..,Cd

qQ(C1, .., Cd)
d∏
i=1

q(Xi)
qQ(Ci)

q(Ci|Xi). (4.40)

In the following theorem we provide a bound on−Ep(X1,..,Xd) ln qQ(X1, .., Xd).
Note, that we take the expectation with respect to the true, unknown dis-
tribution p that may have an arbitrary form.

Theorem 4.4. For the density estimator qQ(X1, .., Xd) defined by equa-
tions (4.35), (4.38), (4.39), and (4.40), −Ep(X1,..,Xd)qQ(X1, .., Xd) attains

its minimum at γ =
√
ε/2

M and γi =
√
εi/2

ni
, where ε is defined by the right-

hand side of (4.28) and εi is defined by the right-hand side of (4.29). At
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this optimal level of smoothing, with a probability greater than 1 − δ for all
Q = {q(Ci|Xi)}di=1:

−Ep(X1,..,Xd) lnqQ(X1, .., Xd)

≤− I(p̂Q(C1, .., Cd)) + ln(M)

√∑d
i=1 niĨ(Xi;Ci) +K1

2N
+ φ(ε) +K3,

(4.41)

where I(p̂Q(C1, .., Cd)) =
[∑d

i=1H(p̂Q(Ci))
]
−H(p̂Q(C1, .., Cd)) is the multi-

information between C1, .., Cd with respect to p̂Q(C1, .., Cd),

K3 =

[
d∑
i=1

H(p̂(Xi)) + 2
√
εi/2 lnni + φ(εi) + ψ(εi)

]
,

and the functiond φ and ψ are defined in theorem 3.9.

Discussion: We discuss theorem 4.4 first. We point out that qQ(X1, .., Xd)
is directly related to p̂Q(X1, .., Xd) and that p̂Q(X1, .., Xd) is determined
by the empirical frequencies p̂(X1, .., Xd) of the sample and our choice of
Q = {q(Ci|Xi)}di=1. There are only two quantities in the bound (4.41) that
depend on our choice of Q; they are: −I(p̂Q(C1, .., Cd)) and

∑
i
ni
N Ĩ(Xi;Ci)

[note that the latter also appears in φ(ε)]. Thus, theorem 4.4 suggests that
a good estimator qQ(X1, ..Xd) of p(X1, .., Xd) should optimize the trade-
off between −I(p̂Q(C1, .., Cd)) and

∑
i
ni
N Ĩ(Xi;Ci). Similar to theorem 4.1,

the latter corresponds to the mutual information that the hidden cluster
variables preserve on the observed variables. Larger values of Ĩ(Xi;Ci)
correspond to partitions of X1, ..,Xd, which are more complex. The first
term, −I(p̂Q(C1, .., Cd)), corresponds to the amount of structural informa-
tion on Ci-s extracted by the partition. More precisely, we should look at
the value of

∑
iH(p̂(Xi))−I(p̂Q(C1, .., Cd)), where

∑
iH(p̂(Xi)) is a part of

K3 and roughly corresponds to the performance we can obtain by approxi-
mating p(X1, .., Xd) with a product of empirical marginals p̂(X1) · .. · p̂(Xd).
Thus −I(p̂Q(C1, .., Cd)) is the added value of the partition in estimating
p(X1, .., Xd). Since

∑
iH(p̂(Xi)) ≥ I(p̂Q(C1, .., Cd)) the bound 4.41 is al-
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ways positive.

The value of I(p̂Q(C1, .., Cd)) increases monotonically with the increase
of the partition complexity Q (we can see this by the information processing
inequality [27]). Thus, the tradeoff in (4.41) is analogical to the tradeoff in
(4.6): the partition Q should balance its utility function −I(p̂Q(C1, .., Cd))
and the statistical reliability of the estimate of the utility function, which
is related to

∑
i
ni
N Ĩ(Xi;Ci). This tradeoff suggests a modification to the

original objective of co-clustering in [32], which is maximization of I(C1;C2)
alone (Dhillon et. al. [32] discuss the case of two-dimensional matrices). The
tradeoff in (4.41) can be applied to model order selection.

Now we make a few comments about theorem 4.3. An interesting point
about this theorem is that the cardinality of the random variable 〈X1, .., Xd〉
is
∏
i ni. Thus, a direct application of theorem 3.6 to boundD(p̂Q(X1, ., Xd)‖pQ(X1, ., Xd))

will insert this term into the bound. However, by using the factor form (4.15)
of p̂Q(X1, ., Xd) and pQ(X1, ., Xd) we are able to reduce this dependency to
M +

∑
i ni − d − 1. This result hints at the great potential of applying

PAC-Bayesian analysis to more complex graphical models. Exploration of
this direction should be a topic for future work.

4.4.1 Proofs

We conclude this section by presenting the proofs of theorems 4.3 and 4.4.

Proof of Theorem 4.3. The proof is based on the PAC-Bayesian theorem 3.6
on density estimation. To apply the theorem we need to define a prior P over
H and then calculate D(Q‖P). We note that for a fixed Q the cardinalities
of the clusters m̄ are fixed. There are

∏
i ni disjoint subspaces Hm̄ in H.

We handle each Hm̄ independently and then combine the results to obtain
theorem 4.3.

By theorem 3.6 and lemma 4.2, for the prior P over Hm̄ defined in
lemma 4.1, with a probability greater than 1 − δ

(d+1)
∏

i ni
we obtain (4.28)

for each Hm̄. In addition, by theorem 3.8 with a probability greater than
1− δ

d+1 inequality (4.29) holds for each Xi. By a union bound over the
∏
i ni
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subspaces of H and the d variables Xi we obtain that (4.28) and (4.29) hold
simultaneously for all Q and Xi with a probability greater than 1− δ.

To prove (4.32), fix some hard partition h and let Chi = h(Xi). Then:

D(p̂h(X1, .., Xd)‖ph(X1, .., Xd))

= D(p̂h(X1, .., Xd, C
h
1 (X1), .., Chd (Xd))‖ph(X1, .., Xd, C

h
1 (X1), .., Chd (Xd)))

= D(p̂h(C1, .., Cd)‖ph(C1, .., Cd))

+D(p̂h(X1, .., Xd|Ch1 (X1), .., Chd (Xd))‖ph(X1, .., Xd|Ch1 (X1), .., Chd (Xd)))

= D(p̂h(C1, .., Cd)‖ph(C1, .., Cd)) +
d∑
i=1

D(p̂h(Xi|Chi (Xi))‖ph(Xi|Chi (Xi)))

= D(p̂h(C1, .., Cd)‖ph(C1, .., Cd)) +
d∑
i=1

D(p̂(Xi)‖p(Xi))

−
d∑
i=1

D(p̂h(Ci)‖ph(Ci))

≤ D(p̂h(C1, .., Cd)‖ph(C1, .., Cd)) +
d∑
i=1

D(p̂(Xi)‖p(Xi)).

And:

ESeND(p̂h(X1,..,Xd)‖ph(X1,..,Xd))

≤
(
ESeND(p̂h(C1,..,Cd)‖ph(C1,..,Cd))

) d∏
i=1

ESeND(p̂(Xi)‖p(Xi))

≤ (N + 1)M+
∑d

i=1 ni−(d+1),

where the last inequality is by theorem 3.7. From here we follow the lines
of the proof of theorem 3.6. Namely:

ES
[
EP(h)e

ND(p̂h(X1,..,Xd)‖ph(X1,..,Xd))
]

= EP(h)

[
ESeND(p̂h(X1,..,Xd)‖ph(X1,..,Xd))

]
≤ (N + 1)M+

∑d
i=1 ni−(d+1).

Thus, by Markov’s inequality EP(h)e
ND(p̂h(X1,..,Xd)‖ph(X1,..,Xd)) ≤ 1

δ (N +
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1)M+
∑

i ni−(d+1) with a probability of at least 1 − δ and (4.32) follows by
the change of measure inequality (3.38) and convexity of the KL-divergence,
when the prior P over H defined in lemma 4.1 is selected (this time we give
a weight of (

∏
i ni)

−1 to each Hm̄ and obtain a prior over the whole H). The
calculation of D(Q‖P) for this prior is done in lemma 4.2.

Proof of Theorem 4.4.

−Ep(X1,..,Xd) lnqQ(X1, .., Xd) = −Ep(X1,..,Xd) ln EQ(h)qh(X1, .., Xd)

≤ −EQ(h)Ep(X1,..,Xd) ln qh(X1, .., Xd)

= −EQ(h)Ep(X1,..,Xd) ln qh(Ch1 (X1), .., Chd (Xd))
∏
i

q(Xi)
qh(Chi (Xi))

= −EQ(h)[Eph(C1,..,Cd) ln qh(C1, .., Cd)]−
∑
i

Ep(Xi) ln q(Xi)

+
∑
i

EQ(h)Eph(Ci) ln qh(Ci)

≤ −EQ(h)[Eph(C1,..,Cd) ln qh(C1, .., Cd)]−
∑
i

Ep(Xi) ln q(Xi)

+
∑
i

EpQ(Ci) ln qQ(Ci)

At this point we use (3.47) to bound the first and the second term and the
lower bound (3.49) to bound the last term and obtain (4.41).
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Chapter 5

Beyond Co-clustering

The analysis of co-clustering presented in the previous chapter holds for
any dimension d. However, the dependence of the bounds (4.6), (4.32), and
(4.41) on d is exponential because of the M =

∏
imi term they involve.

Thus, high dimensional tasks require a different treatment. Some improve-
ments are also possible if we consider discriminative prediction based on a
single parameter X (i.e., in the case of d = 1). In this chapter we first
consider the case of d = 1 and then the case of d > 2. The analysis of
high dimensional cases suggests a possibility of PAC-Bayesian analysis of
graphical models. This is further discussed in section 5.3.

5.1 Optimal Solution for One Dimension (d = 1)

In this section we prove that in classification by a single parameter there
is no need for intermediate clustering of the parameter values. Instead of
clustering the values of X we apply a much simpler procedure of smoothing
the empirical conditional probabilities p̂(Y |X). It is proved here that such
smoothing can produce at least as good a classifier q(Y |X) as the best pos-
sible clustering. Furthermore, we show that it is possible to find the globally
optimal form of smoothing (at least, from the point of view of its general-
ization properties in predicting Y according to the PAC-Bayesian bounds).
In the applications section we demonstrate that the obtained bound is ex-

73
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tremely tight and is less than 10% away from the test error.

One possible application we suggest for our bound is feature ranking.
As opposed to the frequently applied practice of ranking features according
to their mutual information or correlation with the label, the bound enables
ranking of features according to their generalization potential. This is espe-
cially important when the cardinalities ni-s of the features differ significantly.
For example, if want to predict the probability of a person developing cancer
based on his age (X1) or based on the binary feature of whether the person
smokes or not (X2), the age variable is likely to have a higher correlation
with the label just because it has more values, but this does not mean it
has better predictive abilities. The experiments presented here support the
advantage of the bound as a tool for feature rating.

We call the prediction rules q(Y |X) that map the parameter (feature)
values X directly to the label Y direct mappings. To prove the superiority of
direct mappings over clustering-based solutions we start with the observation
that for any clustering Qc = {q(C|X), q(Y |C)} a classification rule q(Y |X)
defined as

q(y|x) =
∑
c

q(y|c)q(c|x) (5.1)

achieves the same loss as the loss of Qc. Therefore, the space of all direct
mappings q(Y |X) incorporates all possible solutionsQc = {q(C|X), q(Y |C)}
that can be achieved via intermediate clustering. It remains to be shown
that the generalization power of the direct mappings is not worse than the
generalization power of clustering-based solutions and that the global opti-
mum can be found efficiently.

To analyze the generalization power of direct mappings we define |Y |
clusters cy, one for each label y ∈ Y, i.e., Cy = {cy : y ∈ Y}. We further
observe that the prediction rule (5.1) corresponds to the prediction strategy
Qy = {q(Cy|X), q(Y |Cy)}, where q(y|cy′) = δ(y, y′), where δ(y, y′) is the
Kronecker delta, and q(cy|x) = q(y|x), where q(y|x) is defined by (5.1). In
other words, the clustering Cy is identified with the labeling Y . We can
apply the PAC-Bayesian bound (4.6) to bound the prediction ability of Qy.
Since Cy is identified with Y we can replace Ĩ(X;C) in (4.6) with Ĩ(X;Y ),
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where
Ĩ(X;Y ) =

1
n

∑
x,y

q(y|x) ln
q(y|x)
q̃(y)

, (5.2)

where n = |X| and

q̃(y) =
1
n

∑
x

q(y|x). (5.3)

Note that q(y|x) is our prediction strategy and it is known; thus all the
above quantities are known and depend on q(y|x). By the information pro-
cessing inequality [27], Ĩ(X;C) ≥ Ĩ(X;Y ) for Ĩ(X;C) corresponding to Qc.
Furthermore, since the predictions of Qc are identical to the predictions of
the corresponding Qy their empirical losses are equal. Thus the bound (4.6)
for the direct mapping Qy is at least as tight as the same bound for the
clustering-based mapping Qc to which it corresponds. Therefore, we can do
the optimization of the prediction rule within the space of direct mappings
only without compromising for the quality. We will show later on that it is
possible to find globally optimal prediction rule within the space of direct
mappings.

We can tighten the bound further by realizing that in the space of di-
rect mappings each label is assigned to exactly one cluster. Thus there are
exactly |Y | clusters and at most (|Y |!) possibilities to assign labels to these
clusters (instead of n possibilities to choose the number of clusters and m|Y |

possibilities to assign them labels in a general grid clustering). Thus, (4.6)
can be improved in this case to:

Db(L̂(Qy)‖L(Qy)) <
nĨ(X;Y ) + ln

[(n+|Y |−1
|Y |−1

)]
+ ln(|Y |!) + 1

2 ln(4N)− ln δ

N
(5.4)

≤
nĨ(X;Y ) + (|Y | − 1) ln(n+ 1) + |Y | ln |Y | − |Y |+ 1

2 ln(4N)− ln δ
N

Note that the bound (5.4) holds for any prediction rule q(Y |X), no
matter how it was obtained. Furthermore, it is possible to find the global
optimum of (5.4). In order to find the global optimum observe that L(Qy)
depends on the tradeoff between L̂(Qy) and Ĩ(X;Y ) and that L̂(Qy) is
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linear in q(Y |X) and Ĩ(X;Y ) is convex in q(Y |X). Thus, we can minimize
the parameterized tradeoff L̂(Qy)+βĨ(X;Y ) and apply a linear search over
β to find the globally optimal bound on L(Qy).

It is also possible to apply Occam’s razor bound (3.28) for randomized
classifiers to obtain a bound on L(Qy). By Occam’s razor bound we obtain:

Db(L̂(Qy)‖L(Qy)) <
nH(q̃(Y )) + ln

[(n+|Y |−1
|Y |−1

)]
+ ln(|Y |!)− ln δ

N
. (5.5)

Unfortunately, (5.5) cannot be optimized with a gradient descent since
H(q̃(Y )) has no derivative with respect to q(Y |X), but if applied to the
maximum likelihood prediction rule, in practice it often suggests a slightly
tighter bound than the optimization of (5.4) [e.g., for the zero-one loss the
maximum likelihood prediction rule is qml(x) = arg maxy p̂(y|x)].

A related bound on generalization in prediction by a single feature was
proposed in [74, 75]. Sabato and Shalev-Shwartz designed an estimator for
the loss of a prediction rule based on the empirical frequencies qemp(y|x) =

p̂(y|x). They proved that their estimate is at most O
(

ln(N/δ)
√

ln(1/δ)√
N

)
far

from the generalization error of qemp. Compared to their work, a strong
advantage of the bound in (5.4) is that it holds for any prediction rule
q(Y |X). In particular, it holds for the maximum likelihood prediction
qml(x) = arg maxy p̂(y|x) that performs much better than qemp in practice.

Note that direct mapping is no longer optimal when there is more than
one parameter. For example, for two parameters X1, X2 with cardinalities
n1, n2 direct smoothing of the empirical conditional probability p̂(Y |X1, X2)
introduces the (n1n2)Ĩ(〈X1, X2〉, Y ) term into the bound, whereas in a
clustering-based solution this term is decomposed into

∑2
i=1 niĨ(Xi;Ci).

5.2 High Dimensions (d > 2)

In this section we suggest a possible approach to analysis of high dimensional
tasks, where the parameter space X1, ..,Xd is more than 2-dimensional (d >
2). Recall that the bounds (4.6), (4.32), and (4.41) all involve the number of
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X1 X2

C1 C2

D1

X3 X4

C3 C4

D2

Y

(a) Discriminative Prediction

X1 X2

C1 C2

D1

X3 X4

C3 C4

D2

(b) Density Estimation

Figure 5.1: Illustration of graphical models for discriminative pre-
diction and density estimation in high-dimensional spaces. In both
illustrations d = 4.

partition cells M =
∏
imi. This term is reasonably small when the number

of dimensions is small (two or three). However, as the number of dimensions
grows, this term grows exponentially. For example, if d = 10 and we use only
2 clusters along each of the 10 dimensions, this already yields 210 = 1024
partition cells.

One possible way to handle high dimensional cases is to use hierarchical
partitions, as shown in Figure 5.1. For example, the discriminative predic-
tion model corresponding to the model in Figure 5.1.a is:

q(Y |X1, .., X4) =
∑
D1,D2

q(Y |D1, D2)
∑

C1,..,C4

2∏
i=1

q(Di|C2i−1, C2i)
4∏
j=1

q(Cj |Xj).

(5.6)
And the corresponding randomized prediction strategy is
Q =

{
{q(Ci|Xi)}4i=1, {q(Di|C2i−1, C2i}2i=1, q(Y |D1, D2)

}
. In this case the

hypothesis space is the space of all hard partitions of Xi-s to Ci-s and of
the pairs 〈C2i−1, C2i〉 to Di-s. By repeating the analysis in theorem 4.1 we
obtain that with a probability greater than 1− δ:

Db(L̂(Q‖L(Q)) <
F1 + F2 + |D1||D2| ln |Y |+ 1

2 ln(4N)− ln δ
N

, (5.7)
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X1 X2

C1 C2

D1

X3 X4

C3 C4

D2

A R L A F T E G

Figure 5.2: Illustration of an application of models in Figure 5.1 to
sequence modeling. The sequence below is an imaginary subsequence of
length 8 of a protein sequence. Each Xi corresponds to a pair of amino acids
in the subsequence.

where

F1 =
4∑
i=1

(
niĨ(Xi;Ci) +mi lnni

)
, (5.8)

F2 =
2∑
i=1

(
(m2i−1m2i)Ĩ(Di; 〈C2i−1, C2i〉) + |Di| ln(m2i−1m2i)

)
. (5.9)

Observe that the M ln |Y | term in (4.6), which corresponds to the clique
〈C1, C2, C3, C4, Y 〉, is replaced in (5.7) with terms which correspond to much
smaller cliques 〈C1, C2, D1〉, 〈C3, C4, D2〉, and 〈D1, D2, Y 〉. This factoriza-
tion makes it possible to control the complexity of the partition and the
tightness of the bound.

We provide an illustration of a possible application of the models in Fig-
ure 5.1. Imagine we intend to analyze protein sequences. Protein sequences
are sequences over the alphabet of 20 amino acids. Subsequences of length
8 can reach 208 = 256 · 108 instantiations. Instead of studying this space
directly, which would require an order of 256 · 108 samples, we can asso-
ciate each Xi with a pair of amino acids - see Figure 5.2. The subspace
of pairs of amino acids is only 202 = 400 instances large and local interac-
tions between adjacent pairs of amino acids can easily be studied. We can
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cluster the pairs of amino acids into, let’s say, 20 clusters C. Interactions
between adjacent pairs of C-s in such a construction correspond to inter-
actions between quadruples of amino acids. The subspace of quadruples is
204 = 16 · 104 instances large. However, the reduced subspace of pairs of
Ci-s is only 202 = 400 instances large. Thus, we have doubled the range of
interactions, but remained at the same level of complexity. We can further
cluster pairs of Ci-s (which correspond to quadruples of amino acids) into
Di-s and study the space of 8-tuples of amino acids while remaining at the
same level of complexity.

The above approach shares the same basic principle already discussed in,
for example, the collaborative filtering task. By clustering together similar
pairs (and then quadruples) of amino acids we increase the statistical relia-
bility of the observations, but reduce the resolution at which we process the
data. The bound (5.7) suggests how this tradeoff between model resolution
and statistical reliability can be optimized. It is further possible to derive
analogs to (4.32) and (4.41) that apply to density estimation hierarchies as
in Figure 5.1.b in a similar manner.

5.3 PAC-Bayesian Analysis of Graphical Models

The result in the previous section suggests a new approach to learning graph-
ical models by providing a way to evaluate the expected performance of a
graphical model on new data. Thus, instead of constructing a graphical
model that fits the observed data it serves to construct a model with good
generalization properties. Note that the prediction rule (5.6) and bound
(5.7) both correspond to the undirected graph in Figure 5.1.a and to the di-
rected graph in Figure 5.3. (In fact, Figure 5.1.a is a moralized counterpart
of the directed acyclic graph in Figure 5.3 [28].)

The analysis used to derive bound (5.7) can be applied to any directed
graphical model in the form of a tree (directed up, as in Figure 5.3) or its
moralized counterpart. The analysis shows that the generalization power
of these graphical models is determined by a tradeoff between empirical
performance and the amount of information that is propagated up the tree.
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X1 X2

C1 C2

D1

X3 X4

C3 C4

D2

Y

Figure 5.3: Illustration of a directed graphical model. A correspond-
ing moral graph is depicted in Figure 5.1.a.

It is important to note that the PAC-Bayesian bound is able to utilize the
factor form of distribution (5.6) and that bound (5.7) depends on the sizes
of the tree cliques, but not on the size of the parameter space X1 × .. ×
X4. Further, a prior can be added over all possible directed graphs under
consideration to obtain a PAC-Bayesian bound that will hold for all of them
simultaneously. Development of efficient algorithms for optimization of the
tree structure and extension of the results to more general graphical models
will be key directions for future research.
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Chapter 6

Bound Minimization

Algorithms

In Chapter 4 we presented generalization bounds for discriminative predic-
tion and density estimation with co-clustering. The bounds presented in
theorems 4.1 and 4.4 hold for any prediction rule Q based on grid clustering
of the parameter space X1× ..×Xd. In this chapter we address the question
of how to find local optima of the bounds. Since the bounds are not convex
in all of the parameters simultaneously it may be exponentially hard to find
a globally optimal solution.

As we show in the applications section, the bounds are remarkably tight;
however for practical purposes the tightness of the bounds may still be
insufficient. In this chapter we suggest how to replace the bounds with a
tradeoff that can be further fine tuned, e.g., via cross-validation, to improve
their usability in practice.

Finally, we suggest an optimization procedure for finding the global opti-
mum of the bound for discriminative prediction based on a single parameter
suggested in chapter 5.
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6.1 Minimization of the PAC-Bayesian Bound for

Discriminative Prediction with Grid Cluster-

ing

We start with minimization of the PAC-Bayesian bound for discriminative
prediction based on grid clustering (4.6) suggested in theorem 4.1. For
convenience we quote the bound (4.6) below once again:

Db(L̂(Q)‖L(Q)) <

∑d
i=1

(
niĨ(Xi;Ci) +mi lnni

)
+
(∏d

i=1mi

)
ln |Y |+K

N
,

where K = 1
2 ln(4N)− ln δ. We further rewrite it in a slightly different way:

Db(L̂(Q)‖L(Q)) <
∑d

i=1 niĨ(Xi;Ci) +K ′

N
, (6.1)

where

K ′ =
d∑
i=1

mi lnni +

(
d∏
i=1

mi

)
ln |Y |+ 1

2
ln(4N)− ln δ.

Note that K ′ depends on the number of clusters mi used along each dimen-
sion, but not on a specific form of a grid partition. Once the number of
clusters used along each dimension has been chosen, K ′ is constant.

The minimization problem corresponding to (6.1) can be stated as fol-
lows:

min
Q

L s.t. Db(L̂(Q)‖L) =
∑d

i=1 niĨ(Xi;Ci) +K ′

N
. (6.2)

It is generally possible to solve the minimization problem (6.2) directly
using alternating projection methods - see, e.g., [72] for such an approach
to solving a similar minimization problem for linear classifiers. We choose a
slightly different way that further enables us to compensate for the imper-
fection of the bounds. Since K ′ is constant, L(Q) depends on the tradeoff
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between L̂(Q) and
∑d

i=1 niĨ(Xi;Ci), which can be written as follows:

F(Q) = βNL̂(Q) +
d∑
i=1

niĨ(Xi;Ci). (6.3)

The minimization problem (6.2) is then replaced by:

min
Q

βNL̂(Q) +
d∑
i=1

niĨ(Xi;Ci). (6.4)

In general, every value of β yields a different solution to the minimiza-
tion problem (6.4). The optimum of (6.2) (which is computationally hard
to find) corresponds to some specific value of β. Hence, by scanning the
possible values of β and minimizing (6.4) it is virtually possible to find
the optimum of (6.2) (only virtually, because finding the global optimum
of (6.4) is computationally hard as well). However, the tradeoff (6.3) pro-
vides us an additional degree of freedom. In cases where the bound (4.6)
is not sufficiently tight for practical applications it is possible to tune the
tradeoff by determining the desired value of β via cross-validation instead
of back-substitution into the bound.

The minimization problem (6.4) is closely related to the rate distortion
tradeoff in information theory [27]. Since L̂(Q) is linear in Q and Ĩ(Xi;Ci)
is convex in Q, for d = 1 it is possible to find the global minimum of
F(Q). However, for d ≥ 2 only a local minimum can be achieved. To
find a local minimum of F(Q) we adapt an iterative minimization EM-
like alternating projection procedure, very similar to the Blahut-Arimoto
algorithm for minimization of the rate distortion function [5, 17, 27]. For
the sake of simplicity of the notations we restrict ourselves to the case of
d = 2.

The Lagrangian corresponding to the minimization problem (6.4) is:

L(Q) = βNL̂(Q) +
2∑
i=1

niĨ(Xi;Ci) +
2∑
i=1

∑
xi∈Xi

ν(xi)
∑
ci

q(ci|xi)
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+
∑
c1,c2

ν(c1, c2)
∑
y

q(y|c1, c2), (6.5)

where ν-s are Lagrange multipliers corresponding to normalization con-
straints on {q(Ci|Xi)}2i=1 and q(Y |C1, C2). In order to minimize L(Q) we
write L̂(Q) explicitly:

L̂(Q) =
∑

x1,x2,y

p̂(x1, x2, y)
∑
y′

q(y′|x1, x2)l(y, y′)

=
∑

x1,x2,y

p̂(x1, x2, y)
∑

y′,c1,c2

q(y′|c1, c2)q(c1|x1)q(c2|x2)l(y, y′)

=
∑
y,y′

l(y, y′)
∑
c1,c2

q(y′|c1, c2)
∑
x1,x2

q(c1|x1)p̂(x1, x2, y)q(c2|x2).

We further derive L̂(Q) with respect to q(C1|X1). The derivative with re-
spect to q(C2|X2) is similar. To improve the readability of the following
equations we use lower case letters to denote variables that change in sum-
mations and capital letters to denote variables that are fixed in summations.

∂L̂(Q)
∂q(C1|X1)

=
∑
y,y′

l(y, y′)
∑
x2,c2

q̂(y′|C1, c2)p(X1, x2, y)q(c2|x2). (6.6)

Recall that:
Ĩ(Xi;Ci) =

1
ni

∑
xi,ci

q(ci|xi) ln
q(ci|xi)
q̃(ci)

and
q̃(ci) =

1
ni

∑
xi

q(ci|xi).

Hence:
∂niĨ(Xi;Ci)
∂q(Ci|Xi)

= ln
q(Ci|Xi)
q̃(Ci)

.

Derivatives of the remaining terms in L(Q) provide normalization for the
corresponding variables. Thus, taking the derivative of L(Q) with respect
to q(Ci|Xi), equating it to zero and reorganizing the terms we obtain a set
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of self-consistent equations that can be iterated until convergence:

q̃t(ci) =
1
ni

∑
xi

qt(ci|xi) (6.7)

qt+1(ci|xi) =
q̃t(ci)

Zt+1(xi)
e
−βN ∂L̂(Qt)

∂q(ci|xi) (6.8)

Zt+1(xi) =
∑
ci

qt+1(ci|xi) (6.9)

qt+1(y|c1, c2) = δ[y, y∗t+1(c1, c2)] (6.10)

y∗t+1(c1, c2) = arg min
y′

∑
y

l(y, y′)
∑
x1,x2

qt+1(c1|x1)p̂(x1, x2, y)qt+1(c2|x2),

(6.11)

where δ[·, ·] is the Kronecker delta function, ∂L̂(Q)
∂q(Ci|Xi)

is given by (6.6), and
the subindex t denotes the iteration number. Equations (6.10) and (6.11)
correspond to minimization of L̂(Q) with respect to q(Y |C1, C2) and gener-
ally depend on the loss function. For the zero-one loss y∗(c1, c2) is the most
frequent value of y appearing in the 〈c1, c2〉 partition cell, for the absolute
loss it is the median value, for the quadratic loss it is the average value.
We summarize the algorithm in Figure 6.1. We note that the quadratic loss
y∗(c1, c2), which is the average value in this case, can fall out of the finite
space of labels Y and generally a separate analysis is required for this case
(which is beyond the scope of this work). However, in practice the algorithm
can still be applied.

6.2 Minimization of the PAC-Bayesian Bound for

Density Estimation

Similar to the PAC-Bayesian bound for discriminative prediction, the PAC-
Bayesian bound for density estimation (4.41) depends on the tradeoff:

G(Q) = −βNI(p̂Q(C1, C2)) +
2∑
i=1

niĨ(Xi;Ci). (6.12)
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Algorithm 6.1 Algorithm for alternating projection minimization of
F(Q) = βNL̂(Q) +

∑2
i=1 niĨ(Xi;Ci).

Input: p̂(x1, x2, y), N , n1, n2, m1, m2, l(y, y′), |Y |, β.
Initialize: q0(Ci|Xi) and q0(Y |C1, C2) randomly.
q̃0(ci)← 1

ni

∑
xi
qt(ci|xi)

repeat
for i = 1, 2 do

qt+1(ci|xi)← q̃t(ci)e
−βN ∂L̂(Qt)

∂q(ci|xi)

Zt+1(xi)←
∑

ci
qt+1(ci|xi)

qt+1(ci|xi)← qt+1(ci|xi)
Zt+1(xi)

q̃t+1(ci)← 1
ni

∑
xi
qt+1(ci|xi)

y∗t+1(c1, c2)← arg miny′
∑

y l(y, y
′)
∑

x1,x2
qt+1(c1|x1)p̂(x1, x2, y)qt+1(c2|x2)

qt+1(y|c1, c2)← δ[y, y∗t+1(c1, c2)]
t← t+ 1

end for
until convergence
return {q(Ci|Xi)}2i=1, q(Y |C1, C2) from the last iteration.

All other terms in (4.41) do not depend on the specific form of grid partition
Q. (As in the previous section we restrict ourselves to d = 2.) Unfortu-
nately, −I(p̂Q(C1, C2)) is concave in q(Ci|Xi)-s, whereas Ĩ(Xi;Ci) is convex
in q(Ci|Xi). Therefore, alternating projection methods are hard to apply.
Instead, G(Q) can be minimized using sequential minimization [91, 32]. The
essence of sequential minimization method is that we start with some ran-
dom assignment q(Ci|Xi) and then iteratively take xi-s out of their clusters
and reassign them to new clusters, so that G(Q) is minimized. This ap-
proach returns a hard partition of the data (i.e., each xi is deterministically
assigned to a single ci). The algorithm is given in Figure 6.2.
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Algorithm 6.2 Algorithm for sequential minimization of G(Q) =
−βNI(p̂Q(C1, C2)) +

∑2
i=1 niĨ(Xi;Ci).

Input: p̂(x1, x2), N , n1, n2, m1, m2, β.
Initialize: q0(Ci|Xi) randomly.
repeat

for all x1 ∈ X1 and all x2 ∈ X2 according to some random order over
X1 and X2: do

for i = 1, 2 do
Select xi ∈ Xi according to the order selected above.
Compute G(Q) for each possible assignment of xi to ci ∈ {1, ..,mi}

Reassign xi to ci such that G(Q) is minimized.
Update p̂Q(C1, C2)←

∑
x1,x2

q(C1|x1)p̂(x1, x2)q(C2|x2).
end for

end for
until no reassignments further minimize G(Q).
return {q(Ci|Xi)}2i=1 from the last iteration.

6.3 Minimization of the PAC-Bayesian Bound for

Discriminative Prediction when d = 1

In discriminative prediction based on a single parameter (d = 1) the tradeoff
(6.3) is simplified to:

F(Q) = βNL̂(Q) + nĨ(X;Y ). (6.13)

The algorithm 6.1 then simplifies to alternating minimization between two
sets that are convex in q(Y |X), exactly as in minimization of the rate distor-
tion function [27]. Hence, the minimization achieves the global optimum of
F(Q) in this case. Further, by a linear scan of the values of β it is possible
to achieve the global optimum of (5.4).

The algorithm for minimization of (6.13) is given in Figure 6.3. To derive
the algorithm we use the fact that

L̂(Q) =
∑
x,y

p̂(x)p̂(y|x)
∑
y′

q(y′|x)l(y, y′)
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and
dL̂(Q)
dq(Y |X)

= p̂(X)
∑
y′

p̂(y′|X)l(Y, y′).

Note that the derivative is in fact constant.

Algorithm 6.3 Algorithm for alternating projection minimization of
F(Q) = βNL̂(Q) + nĨ(X;Y ).

Input: p̂(x, y), N , n, l(y, y′), |Y |, β.
Initialize: q0(Y |X) arbitrarily.
q̃0(y)← 1

n

∑
x qt(y|x)

repeat

qt+1(y|x)← q̃t(y)e−βN
dL̂(Q)
dq(y|x)

Zt+1(x)←
∑

y qt+1(y|x)

qt+1(y|x)← qt+1(y|x)
Zt+1(x)

q̃t+1(y)← 1
n

∑
x qt+1(y|x)

t← t+ 1
until convergence
return q(Y |X) from the last iteration.
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Chapter 7

Applications

In this chapter we demonstrate several illustrative applications of the bounds
developed in this thesis.

7.1 Collaborative Filtering

The problem of collaborative filtering was discussed in the previous chapters.
The goal of collaborative filtering is to complete the missing entries in a
viewers by movies ratings matrix. This problem attracted a great deal of
attention recently thanks to the Netflix challenge [1]. Since our goal here
is mainly to illustrate our approach to co-clustering via the PAC-Bayesian
bounds rather than to solve the large scale challenge we concentrate on a
much smaller MovieLens 100K dataset [2]. The dataset consists of 100,000
ratings on a five-star scale for 1,682 movies by 943 users. We take the
five non-overlapping splits of the dataset into an 80% train and a 20% test
subsets provided at the MovieLens website. We stress that the training data
are extremely sparse - only 5% of the training matrix entries are populated,
whereas 95% of the values are missing.

To measure the accuracy of our algorithm we use mean absolute error
(MAE) metrics, which is commonly used for evaluation on this dataset [43].
Let p̌(x1, x2, y) be the distribution over 〈X1, X2, Y 〉 in the test set. The
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mean absolute error is defined as:

MAE =
∑

x1,x2,y

p̌(x1, x2, y)
∑
y′

q(y′|x1, x2)|y − y′|. (7.1)

In previous work the best MAE reported for this dataset was 0.73 [43].
It is worth recalling that the ratings are on a five-star scale, thus a MAE of
0.73 means that on average the predicted rating is 0.73 stars (less than one
star) far from the observed rating. The maximal possible error is 4 (which
occurs if we predict one star instead of five or vice versa), which determines
the scale on which all the results should be judged.

In [80] we improved the MAE on this dataset to 0.72 using the MDL
formulation of co-clustering. In the MDL formulation the co-clustering so-
lutions are evaluated by the total description length, which includes the
length of the description of assignments of Xi-s to Ci-s together with the
length of the description of the ratings given the assignments. For fixed
numbers of clusters mi-s used along each dimension, the MDL solution cor-
responds to optimization of the tradeoff (6.3) for β = 1. For convenience
we cite (6.3) below once again:

F(Q) = βNL̂(Q) +
d∑
i=1

niĨ(Xi;Ci).

In the MDL formulation of co-clustering developed in [80] only hard (deter-
ministic) assignments of Xi-s to Ci-s were considered. The best performance
of 0.72 was achieved at m1 = 13 and m2 = 6 with beyond 1% sensitivity
to small changes in m1 and in m2 both in the description length and in the
prediction accuracy. The deviation in prediction accuracy between the five
splits of the MovieLens dataset was below 0.01.

In this work we implemented algorithm 6.1 for minimization of F(Q)
(for an arbitrary value of β) and applied it to the MovieLens dataset. There
are four major differences between the algorithm 6.1 and the algorithm for
minimization of F(Q) suggested in [80] that should be highlighted:

• The algorithm 6.1 considers soft assignments of Xi-s to Ci-s.
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• The algorithm 6.1 is a gradient descent algorithm rather than the
sequential optimization algorithm suggested in [80]. Note that this
point is neither positive nor negative, since sequential optimization al-
gorithms are very powerful and especially in hard cases can outperform
gradient descent methods. The advantage of gradient descent methods
is in their mathematical elegance, faster convergence (although in the
hard cases it may be fast convergence to trivial, but strong attractors),
and the ability to handle soft assignments.

• Algorithm 6.1 directly optimizes a given loss function (MAE in the
case of MovieLens) rather than the description length, which is only
indirectly related to the loss function.

• Algorithm 6.1 considers arbitrary values of β. (However, the algorithm
in [80] can be easily extended to handle arbitrary values of β.) As we
will show below, β = 1 is not always optimal.

We conducted three experiments with algorithm 6.1. In all three experi-
ments we fix the numbers of clusters m1 and m2 used along both dimensions
and analyze the MAE loss on the test set and the value of the bound (4.6) as
a function of β. In each experiment, for each of the five splits of the dataset
into train and test sets mentioned earlier, and for each value of β we apply
10 random initializations of the algorithm. The solution Q corresponding to
the best value of F(Q) per each data split and per each value of β is then
selected. We further calculate the average of the results over the dataset
splits to produce the graphs of the bound values and test MAE as functions
of β.

In the first experiment we verify that we are able to reproduce the results
achieved previously in [80]. We set m1 = 13 and m2 = 6, as the best values
obtained in [80] and apply algorithm 6.1. The results are presented in Figure
7.1. We make the following observations based on this experiment:

• The performance of algorithm 6.1 is comparable to the performance
achieved in [80] with sequential optimization.
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(a) Bound (4.6).
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(b) Test Loss (zoom into subfigure a.).

Figure 7.1: Co-clustering of the MovieLens dataset into 13x6 clus-
ters. Figure a. shows the value of bound (4.6) together with the MAE on
the test set as a function of β. Figure b. zooms into MAE on the test set.
The values of β are on a log scale. See text for further details.
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• The optimal performance is achieved at β close to one, which corre-
sponds to the MDL functional optimized in [80].

• The values of the bound are meaningful (recall that the maximal pos-
sible loss is 4; thus the bound value of ∼ 1.25 is informative).

• The bound is 25%-75% far from the test error.

• The bound does not follow the shape of the test loss. According to the
bound in this task it is best to assign all the data to one big cluster.
This is partially explained by the fact that this is a hard problem and
the improvement in the empirical loss L̂(Q) achieved by co-clustering is
relatively small. For the best co-clustering solution found L̂(Q) ≈ 0.67,
whereas if we assign all the data to one big cluster L̂(Q) ≈ 0.89. Thus,
the improvement in L̂(Q) achieved by the clustering is only about 30%
when the tightness of the bound is 25%-75%. This is clearly insufficient
to apply the bound as the main guideline for model order selection.
However, it is possible to set the value of β in the tradeoff F(Q)
via cross-validation and obtain remarkably good results. It should be
pointed out that the tradeoff F(Q) was derived from the bound, thus
even though the analysis is not perfectly tight it produced a useful
practical result.

• Note that in the setting of this experiment the small values of m1

and m2 provide “natural regularization”; thus there is no significant
decrease in performance when we increase β beyond 1. This will change
in the following experiments.

One of the major advantages of bound (4.6) and the tradeoff F(Q) de-
rived from it is that it mainly penalizes the effective complexity of the so-
lution rather than the gross number of clusters used. The practical impli-
cation of this property is that we can initialize the optimization algorithm
with more clusters than are actually required to solve a problem and the
algorithm will automatically adjust the extent to which it uses the available
clusters. This property is verified in the following two experiments. In the
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(a) Bound (4.6).
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(b) Test Loss (zoom into subfigure a.).

Figure 7.2: Co-clustering of the MovieLens dataset into 50x50 clus-
ters. Figure a. shows the value of bound (4.6) together with the MAE on
the test set as a function of β. Figure b. zooms into MAE on the test set.
The values of β are on a log scale. See text for further details.
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first of these we initialize algorithm 6.1 with m1 = m2 = 50 clusters along
each dimension. The result of optimization of F(Q) as a function of β is
presented in Figure 7.2. We make the following observations based on this
experiment:

• The best performance of the test MAE (0.72) achieved in the previous
setting with m1 = 13 and m2 = 6 is achieved in the new setting with
m1 = m2 = 50 as well. This supports the ability of the algorithm to
operate with more clusters than are actually required by the problem
and to adjust the complexity of the solution automatically.

• Note that the optimal value of β in this setting is below 1. In par-
ticular, this implies that the MDL formulation, which corresponds to
β = 1 would overfit in this case. The role of the regularization param-
eter β is also more evidently expressed here compared to the preceding
experiment.

• The values of the bound, although less tight than in the previous case,
are still meaningful. The shape of the bound becomes closer to the
shape of the test loss, although in light of the preceding experiment we
would not attribute importance to it and still prefer to set the value
of β via cross-validation.

In our last experiment we went to the extreme case of taking m1 =
m2 = 283. Note that the size of the cluster space m1m2 in this case is
m1m2 = 80, 089 and is equal to the size of the train set, N = 80, 000.
The implication is that extensive use of all available clusters can result in a
situation where each partition cell contains an order of a single observation,
which is clearly insufficient for statistically reliable predictions. Thus, in
this experiment the number of clusters provides no regularization at all and
the only parameter responsible for regularization of the model is the tradeoff
parameter β. The result of the experiment is presented in Figure 7.3. We
highlight the following points regarding this experiment:

• The best performance of the test MAE (0.72) is achieved in this ex-
periment as well. This further stresses the ability to have full control
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(b) Test Loss (zoom into subfigure a.).

Figure 7.3: Co-clustering of the MovieLens dataset into 283x283
clusters. Figure a. shows the value of bound (4.6) together with the MAE
on the test set as a function of β. Figure b. zooms into MAE on the test
set. The values of β are on a log scale. See text for further details.
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over regularization of the model via parameter β of the tradeoff F(Q).

• The role of regularization parameter β is further increased in this
experiment compared to the previous two. The optimal value of β
here is clearly below 1 (the optimal β ≈ 0.5), suggesting that the
MDL solution would be overfitting.

• The value of the bound still remains meaningful, although it is already
quite far from the test error. The shape of the bound does not seem
to provide useful information and the value of β should be set via
cross-validation.

7.2 Prediction by a Single Parameter (d = 1) and

Feature Rating

In this section we provide a series of applications of the PAC-Bayesian bound
for classification by a single feature (5.4). We use algorithm 6.3 to find the
optimal prediction rule q∗(y|x) that minimizes the bound. More precisely,
we apply the algorithm to minimize the tradeoff F(Q) given in (6.13) for a
set of values of β and select the value of β for which the value of the bound
(5.4) is minimal. Figure 7.4 illustrates that the bound (5.4) has a single
global optimum as a function of β. Hence, the above procedure achieves the
global optimum of (5.4).

We further compare the PAC-Bayesian bound with Occam’s razor bound
(3.24) applied to the maximum likelihood classification rule. For the zero-
one loss the maximum likelihood classification rule qml(X) returns for each
value of x the most frequent value of Y that appeared with that x in the
sample: qml(x) = arg maxy p̂(y|x).

The results presented here generally follow the experiments reported
previously in [82]. However, there are two improvements compared to the
previous work that should be mentioned. First, we eliminate the 1

4(ln(n) +
1)2 factor from the bounds, and second, we directly optimize the bounds in
their KL-divergence form rather than the square root approximation as was
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Figure 7.4: The value of PAC-Bayesian bound (5.4) as a function of
β in the F(Q) tradeoff. In this experiment we selected a range of values
of β and optimized F(Q) for each value of β using algorithm 6.3 for the
first parameter in the CMC dataset. Recall that the algorithm 6.3 achieves
the global optimum of F(Q). For each value of β we calculated the value of
bound (5.4) corresponding to the solution that optimizes F(Q) and plotted
it in this figure. From the figure it is clear that the global optimum of (5.4)
can easily be found. The shape of the dependence is typical for all other
features and experiments.

done previously in [82]. These two factors (mainly the first one) lead to a
slight improvement in the results.

The experiments were conducted on four datasets obtained from the
UCI Machine Learning Repository: Contraceptive Method Choice (CMC),
Mushrooms, Letters, and Nursery. In all the experiments we used 5 random
partitions of the data into 80% train and 20% test subsets. Table 7.1 provides
a short summary of the main parameters of the datasets. See [6] for a full
description.

In Figure 7.5 we present the test loss of the maximum likelihood pre-
diction rule qml(x) and the test loss of the classification rule q∗(y|x) that
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Table 7.1: Description of the datasets: for every dataset we indicate the
number of features, d, a list of cardinalities of the features, ni, the number
of labels, |Y|, and a train set size, N , which is 80% of each dataset size.

Data set d ni-s |Y| N
CMC 9 34, 4, 4, 15, 2, 2, 4, 4, 2 3 1,178
Mushrooms 22 6, 4, 10, 2, 9, 2, 2, 2, 12, 2, 5, 4, 2 6,499

4, 9, 9, 1, 4, 3, 5, 9, 6, 7, 2
Letters 16 16 for all ni-s 26 16,000
Nursery 8 3, 5, 4, 4, 3, 2, 3, 3 5 10,368

minimizes the bound (5.4). Both prediction rules perform similarly. The
same figure presents the values of PAC-Bayesian bound (5.4) for q∗(y|x)
and the values of Occam’s razor bound (3.24) for qml(x). The performance
of both bounds is also similar. Note that the bounds are exceptionally tight
and that the bounds are less than 15% away from the test error in all cases.

We conclude this section by comparing bounds (3.24) and (5.4) ap-
plied to feature ranking with the standard empirical mutual information
Î(X;Y ) =

∑
x,y p̂(x)p̂(y|x) ln p̂(y|x)

p̂(y) and the normalized correlation coeffi-

cient Corr(X;Y ) = Cov(X,Y )√
V ar(X)V ar(Y )

indices. We compare the agreement

between the Top-1, Top-2, and Top-3 parameter subsets suggested by the
indices with the corresponding test-based sets in Figure 7.6. For the Top-1
choice (the best single parameter) bounds (3.24) and (5.4) are clearly supe-
rior to mutual information and normalized correlation in that they provide
a significant level of success in two cases where the other two indices com-
pletely fail. For the Top-2 choice there is a slight advantage over the mutual
information and a clear advantage over the normalized correlation, which
fails completely on the —Mushrooms dataset. In Top-3 the bounds perform
similarly to the mutual information and are still superior to the normal-
ized correlation. The performance of Occam’s razor and the PAC-Bayesian
bound is comparable.
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Figure 7.5: Application of bounds (5.4) and (3.24). This figure dis-
plays an application of PAC-Bayesian bound (5.4) and Occam’s razor bound
(3.24) to the four datasets discussed in text. The legend in subfigure d. cor-
responds to all the graphs. The graphs contain the test loss L(qml) and the
value of Occam’s razor bound (3.24) for the maximum likelihood prediction
rule qml(x) = arg maxy p̂(y|x). They also depict the test loss L(q∗) and the
value of the PAC-Bayesian bound (5.4) for the prediction rule q∗(Y |X) that
minimizes it. Each point on the graphs is an average over 5 random splits
of the corresponding dataset. Baseline corresponds to the performance level
that can be achieved by predicting the test labels using a marginal distribu-
tion of Y on the train set. All the calculations are done per parameter; i.e.,
each point on the graphs corresponds to a separate prediction rule based on
the corresponding parameter. For better visibility of the points they have
been connected with lines, but the lines have no meaning.
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Chapter 8

Discussion and Future Work

8.1 Discussion

There are two major messages to be drawn from this thesis. While they
could have been lost in the technical details of the preceding chapters this
discussion section provides an opportunity to highlight them once again.

The primary message is that we do not learn structure just for the sake
of learning structure, but rather the structure we have learned facilitates
the solution of a higher level goal. Thus it is critical to identify and state
this high level goal clearly and evaluate the quality of the structures we have
learned in terms of their utility in this context.

The second message is that the PAC-Bayesian bounds are a handy tool
for theoretical analysis of the expected performance of structure-based learn-
ing methods. Hypothesis spaces based on structured models usually exhibit
natural heterogeneity, because structures can be differentiated by their com-
plexity. PAC-Bayesian bounds are a useful way to utilize this heterogeneity
and to derive tight bounds that depend on the tradeoff between model com-
plexity and its empirical performance.

In this thesis we demonstrated the applicability of the two aforemen-
tioned messages on the example of co-clustering. First, we described two
high level tasks that can be solved with the help of co-clustering. The first is
discriminative prediction, in which a label is predicted based on two categor-
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ical parameters. Clustering of the values of the parameters as an interme-
diate step improves the predictions by amplifying the statistical reliability
of the relation. The second example is density estimation, in which the
joint probability distribution of two categorical parameters is estimated. As
previously, clustering the parameter values as an intermediate step can pro-
duce more reliable estimations. In the next step we analyzed the expected
generalization performance of discriminative prediction and density estima-
tion solutions based on co-clustering. Using the PAC-Bayesian bounds we
showed by derivation that generalization performance depends on a tradeoff
between empirical performance and the complexity of co-clustering, where
the complexity of co-clustering is measured by the amount of mutual in-
formation that the hidden (cluster) variables preserve on the observed pa-
rameters. Finally, we suggested algorithms for optimization of this tradeoff.
In the application of the suggested algorithms to the MovieLens dataset we
demonstrated that the tradeoff has complete control over model regulariza-
tion and that optimization of the tradeoff yields state-of-the-art results on
this dataset.

A number of technical and conceptual novelties presented in this work
worth are worthy of mention, in addition to the two main messages summa-
rized above:

• In Section 3.3 we extended the PAC-Bayesian theorem for density
estimation of a discrete function of the observations.

• Our approach to formulating the co-clustering objective underscores
the notion of generalization in this task. In turn, this enables analysis
of generalization properties of co-clustering solutions and the regular-
ization of co-clustering models.

• In Section 4.3 we introduced the use of combinatorial priors in PAC-
Bayesian bounds. These priors yield mutual information regularization
terms, as opposed to L2 and L1 norm regularization resulting from
Gaussian and Laplacian priors, respectively.

• We showed that the PAC-Bayesian approach is able to utilize the factor
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form of prediction models and can be extended to graphical models
beyond co-clustering.

8.1.1 The Meaning of Structures with Good Generalization

Properties

As already stated, when learning a structure it is important to identify the
high level goal for which it its intended. The main example of a high level
goal considered in this thesis was the prediction of labels or events. It should
be noted that structures that are good by this criterion are different from
structures that are good by, for example, the stability criterion. This is
best shown by the following example. Assume points in R2 are generated
according to the following process. First, we select a center µ of a Gaussian
according to a uniform distribution on a unit circle in R2. Then we generate
a point x ∼ N (µ, σ2I) according to a Gaussian distribution centered at µ
with a covariance matrix σ2I (where I is a 2 by 2 identity matrix) for a fixed
σ. Given a sample generated according to the above process we can apply a
mixture of Gaussians clustering in order to learn the generating distribution.
Note that:

• Due to the symmetry in the generating process, the solution will always
be unstable (the centers of Gaussians in the mixture of Gaussians
model can move arbitrarily along the unit circle).

• By increasing the sample size and the number of Gaussians in the mix-
ture of Gaussians model we can approximate the true data generating
process arbitrarily well.

Hence, models with good generalization properties are not necessarily stable.
This point should be kept in mind when using generalization as an evaluation
criterion in structure learning.
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8.2 Future Work

This thesis forms a solid basis for several directions for future research which
are discussed next.

8.2.1 A new Form of Matrix Factorization

For d = 2 the prediction model based on co-clustering

q(Y |X1, X2) =
∑
C1,C2

q(Y |C1, C2)q(C1|X2)q(C2|X2)

can be considered as a form of matrix factorization. More specifically, let
D be an n1 × n2 matrix, possibly sparse, with the values of Y observed
for corresponding combinations of 〈X1, X2〉. (Recall that ni = |Xi|.) For
example, D can be a viewers by movies collaborative filtering matrix holding
the ratings. Then we can write:

D ≈ LTMR, (8.1)

where
L = q(C1|X1)

is an m1 × n1 matrix mapping (stochastically) X1-s to their clusters C1-s,

R = q(C2|X2)

is an m2 × n2 matrix mapping (stochastically) X2-s to their clusters C2-s,
and

M = Y (C1, C2)

is an m1×m2 matrix describing what happens in the cluster product space.
In this model each partition cell 〈C1, C2〉 is assigned a single label Y (C1, C2).

In this form of matrix factorization L and R are stochastic matrices
and M is arbitrary. Algorithm 6.1 can be applied to find a locally optimal
factorization. There are several advantages to such factorization over other
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matrix factorization forms including singular value decomposition (SVD)
[97, 39] and non-negative matrix factorization [60, 61]:

• It has a clear probabilistic interpretation.

• It naturally handles missing values.

• Overfitting can be controlled via the regularization parameter β.

• The generalization bounds derived for co-clustering apply to this form
of matrix factorization. (Strictly speaking, the analysis provided here
applies only if the number of possible values in M is fixed ahead of
time, but it can be extended and this point can be relaxed.)

As we have already shown, this form of matrix factorization achieves
state-of-the-art prediction performance on collaborative filtering of the Movie-
Lens dataset. One interesting direction for future research is to compare the
performance of this form of matrix factorization with other forms of matrix
factorization on other practical tasks.

Another promising direction for future research is to apply this form of
matrix factorization in tasks, where multiple related datasets are considered.
For example, let D1 be a collaborative filtering matrix, D2 be a matrix
of viewers by viewer properties and D2 be a matrix of movies by movie
properties. We can look for simultaneous factorizations such that:

D1 ≈ LT1 M1R1

D2 ≈ LT1 M2R2

D3 ≈ LT3 M3R1.

In other words, the clustering of viewers into viewer clusters is shared be-
tween factorization of D1 and D2 and clustering of movies into movie clusters
is shared between factorization of D1 and D3.

The above case is frequent in bioinformatics, when multiple experiments
with partial relations are considered. For example, Alter et. al. [3] ap-
plied generalized SVD (GSVD) to compare yeast and human cell-cycle gene
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expression datasets. In their experiment it is natural to create separate sys-
tems of clusters for yeast and human genes, but a common system of clusters
for the cell-cycle time points. As already pointed out, the suggested method
of matrix factorization has several advantages over SVD (and, consequently,
over GSVD). Hence, it would be interesting to apply this in practice.

8.2.2 Evaluation of Unsupervised Learning Methods based

on their Generalization Properties

In this thesis we have shown that it is possible to identify a high level task
that introduces the notion of generalization to the traditionally unsupervised
task of co-clustering. This in turn makes it possible to conduct generalization
analyses and suggest regularization and model order selection approaches.
This approach to the formulation of unsupervised learning can be extended
to other unsupervised tasks, including classical ones, such as the learning of
mixtures of Gaussians and the learning of graphical models. For example,
in the task of learning a mixture of Gaussians model we can assume that the
data points are generated by some unknown probability distribution. Then
the Gaussian mixture model should be evaluated by its ability to predict
the positions of new points generated by the same probability distribution.
Similarly, in the task of learning graphical models we can assume that the
samples were generated by some unknown probability distribution. The goal
of the graphical model is then to be able to predict new samples generated
by the same distribution.

To make the analysis of Gaussaian mixture models possible and to ex-
tend the analysis of generalization in graphical models beyond the simple
examples already mentioned in this thesis it is essential to generalize the
results of our work in two directions described in the following two sections.

8.2.3 PAC-Bayesian Analysis of Continuous Loss Functions

It is important to extend the PAC-Bayesian analysis to continuous loss func-
tions. This requires substitution of theorem 3.7 by some analog which will
hold for functions with infinite domains. Clearly, some other restrictions
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Figure 8.1: Illustration of a graphical model corresponding to fac-
torization in equation (8.2).

on the family of functions should be imposed. The extension to continuous
loss functions has multiple applications, including regression and continuous
density estimation. For example, it can be applied to analyze generalization
in density estimation with Gaussian mixture models, as described earlier.

8.2.4 PAC-Bayesian Analysis of Generalization in Graphical

Models

As described in Chapter 5, it is possible to generalize the PAC-Bayesian
bounds for co-clustering to more complex graphical models. This suggests
a new point of view on learning of graphical models: instead of learning
graphical models that describe the data at hand we suggest learning graphi-
cal models with good generalization properties. A number of issues however
would need to be tackled. They include:

• Development of efficient algorithms for learning the structure of a
graphical model.

• Development of better bounds for some special forms of graphical mod-
els. For example, for the graphical model in Figure 8.1, which corre-
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sponds to the following factorization model:

q(Y |X1, X2) =
∑
Z

q(Y |Z)q(Z|X1, X2) (8.2)

=
q(X1)q(X2)
q(X1, X2)

∑
Z

q(Y |Z)q(Z|X1)q(Z|X2)
1

q(Z)
,

is it possible to derive a generalization bound that depends on the sum
of mutual information n1Ĩ(Z;X1) +n2Ĩ(Z;X2), but not on the size of
the parameter product space n1n2 = |X1||X2|?

8.2.5 When Structure Learning is Provably Superior?

I would like to conclude this work and the future work section with the
question that was raised at the beginning and that still remained largely
unresolved: “When structure learning is provably superior to other learning
approaches?”. In section 5.1 we proved that in classification by a single pa-
rameter learning the structure of that parameter does not help. We further
proved that in classification by two or more parameters, clustering the values
of the parameters improves the generalization properties of the predictions.
It was not proved, however, that it is impossible to achieve similar or even
better results using unstructured methods or methods based on implicit
structure, like kernels.

The overarching question guiding the examination of structure learning
in this work was prediction of some high level property. But this is by far
from being the only high level task where structure learning can be useful.
Examples of other high level tasks include computational efficiency, storage
efficiency, robustness and control. The fact that we, as humans, perceive the
world around us in a structured manner suggests that this mode of percep-
tion has some advantages over other possible ways we could have developed
over the process of evolution. Identification and better understanding of
these strong points of structure learning are important both for a better un-
derstanding of ourselves and for the formulation of better structure learning
algorithms and comprehension of their outcomes.
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